

Christian-Albrechts-Universität zu Kiel

Fairness Judgments of the Allocation of Organs Findings of a Factorial Survey

Christiane Gross

Institute of Social Sciences CAU Kiel

in collaboration with Peter Kriwy

Rational Choice Sociology: Theory and Empirical Applications Seminar at Venice International University, Dez. 2007

C|AU

Christian-Albrechts-Universität zu Kiel

Agenda

- 1. Introduction
- 2. Theoretical implications
- 3. Data collection
- 4. Respondent and vignette sample
- 5. Results
- 6. Conclusion
- 7. Discussion

1. Introduction

- Distinction between *living donor* and *donation after death* (so called "cadaver donor")
- Statistics of *Eurotransplant* (Benelux, Austria, Germany, Slovenia, Croatia) for the year 2006:
 - 904 persons waiting for a donor *heart* 539 heart transplantations
 - 11,069 persons waiting for a donor kidney 3,239 kidney transplantations
- National coordination of organ transplantation in Switzerland (Swisstransplant)
- Lack of organs destined for organ procurement
- Legal distinction between presumed consent (Austria, Belgium) und extended consent solution (Switzerland, Germany)

1. Introduction

distributive justice norms:

Brink et al. (2006): allocation based on

- ➢ Exchange
- Need
- Equality/equal chances

Bayerl/Mielck (2006):

- Egalitarian perspective
- Individualistic perspective

Rawls (2003):

- Justice as fairness
- Fair rules should be accepted by the population

CAU

1. Introduction

Implications:

- It is impossible to realize the egalitarian principle because of the lack of available organ donors.
- The problem of organ allocation can be seen as a moral dilemma (Ohlsson 1993).

Questions:

- Which fairness norms are being preferred by laypersons?
- Do the evaluation strategies of laypersons differ?
- Which personal characteristics determine a privileged position on the waitlist of organ recipients?

2. Theoretical Implications

Fairness norms of rational actors:

- Actors adjudicate organ procurement in a rational way in terms of polity economics (Elsen 1998):
 - Reproduction and care (sex, marital status, children)
 - Contribution to the national economy (employment)
 - Optimal use of resources
 (age, acuteness, chance of success)
- Homophilia and ,,taste for discrimination" (Becker 1957)
- Helpfulness depending on sex and age

Christian-Albrechts-Universität zu Kiel

3. Data collection

Dimension 1: gender of organ recipient
(1) Mr.
(2) Mrs. (if married) / Ms. Smith is ...

Dimension 2: age of organ recipient (1) 25 (2) 40 years old, ... (3) 55

Dimension 3: marital status of organ recipient

(1) married

(2) close-partnered and has ...

(3) single

Dimension 4: children of organ recipient

(1) no children.

(2) children living in the same household.

(3) children who do not live in the same household.

CAU

Christian-Albrechts-Universität zu Kiel

3. Data collection

Dimension 5: occupation of organ recipient He/she

(1) has been employed for a few years.

(2) has not been employed for a few years.

Dimension 6: acuteness

Because of his/her

(1) serious heart disease he/she is being treated in a hospital.

(2) critical heart disease he/she is being treated in an intensive care unit.

Dimension 7: probability of success

This patient has a

(1) 50 %

(2) 90 %

chance of surviving the first year after transplantation.

3. Data collection

Please waitlist the following 10 fictive persons to receive an organ.

<u>Mrs.</u> White is <u>25</u> years old, is <u>married</u> and has <u>no children</u>. She has been <u>employed</u> for a few years. Because of her <u>serious heart disease she is being treated in a hospital</u>. This patient has a <u>90%</u> chance of surviving the first year after transplantation.

1 – 10	11 – 20	21 - 30	31 – 40	41 – 50	51 - 60	61 – 70	71 – 80	81 - 90	91 –100

➤ 7 vignette dimensions

(Cartesian product of $432 = 2 \times 3 \times 3 \times 3 \times 2 \times 2 \times 2$)

- ➤ random sample of 120 vignettes (12 sets, 10 vignettes each)
- reorganization to avoid order effects

3. Data collection

- > questionnaire with two parts:
 - each respondent 10 vignettes
 - personal questions
- ➤ use of an example vignette
- > pretest at full length (n=60)
- respondents of two student classes (sociology and economics)

CAU

4. Respondent and vignette sample

Table 2. The respondent sample

Variable	Observations	Mean	Std. Dev.	Min	Max
R_FEMALE	200	.41	.493	0	1
R_AGE	200	23.92	4.283	19	66
R_ECON ^a	200	.69	.465	0	1
R_PARTNERED ^b	200	.59	.494	0	1
R_HEALTH ^c	199	.61	.489	0	1
R_TOPIC ^d	200	.23	.422	0	1
R_DON_CARD	200	.12	.325	0	1
R_PATTERN ^e	200	.41	.492	0	1

^a Ref. subject Sociology

^b Ref. single

^c personal general health (1=very good/excellent)

^d Ref. not engaged with the topic organ donation

^e Ref. did not keep in mind the example (Ms. Pattern)

CAU

4. Respondent and vignette sample

Table 1. The vignette sample

Variable	Observations	Mean	Std. Dev.	Min	Max
V_FEMALE	2000	.423	.494	0	1
V_AGE40 ^a	2000	.384	.486	0	1
V_AGE55 ^a	2000	.315	.464	0	1
V_PARTNERED ^b	2000	.293	.455	0	1
V_MARRIED ^b	2000	.368	.482	0	1
V_CHILDREN ^c	2000	.335	.472	0	1
V_CHILDREN_HH ^c	2000	.283	.450	0	1
V_{JOB}^{d}	2000	.529	.499	0	1
V_ACUTENESS	2000	.454	.498	0	1
V_PROB90 ^e	2000	.464	.499	0	1
WAITLIST-NO	1995	3.908	2.244	1	10

^a Ref. age 25 ^b Ref. single ^d Ref. no job

^e Ref. 50% chance of surviving the first year

^c Ref. no children

Christian-Albrechts-Universität zu Kiel

5. Results

Model	RIO Coeff. (T-ratio)	RIV _{all} Coeff. (T-ratio)	RIV _{sign} Coeff. (T-ratio)	
Fixed effects				
INTERCEPT V_FEMALE	3.91 (40.87)	3.91 (41.94) -0.04 (-0.54)	3.91 (41.90)	
V_AGE40 ^a V_AGE55 ^a V_PARTNERED ^b V_MARRIED ^b V_CHILDREN ^c V_CHILDREN_HH ^c V_JOB ^d		$\begin{array}{c} 1.00 (10.60) \\ 1.52 (15.68) \\ 0.13 (1.31) \\ 0.05 (0.51) \\ -0.13 (-1.44) \\ -1.07 (-11.11) \\ -0.24 (-3.26) \\ 0.23 (-2.12) \end{array}$	1.01 (10.98) 1.54 (16.35) -1.06 (-12.57) -0.23 (-3.08)	
V_ACUTENESS V_PROB90 ^e		-0.23 (-3.12) -1.32 (-17.34)	-0.23 (-3.07) -1.29 (-17.69)	
Random effects				
δ_{im} (error variance between)	1.473	1.491 (0.000)	1.495 (0.000)	
ε_{ij} (error variance within)	3.569	2.472	2.471	<u>31%</u>
deviance	8528.36	7880.40	7872.02	
# parameters / # random p.	3 / 2	13 / 2	9 / 2	_
N_V / N_R	1995 / 200	1995 / 200	1995 / 200	

^a Ref. age 25 ^b Ref. single

^d Ref. no job ^e Ref. 50% chance of surviving the first year

^c Ref. no children

CAU

Model	RIVR Coeff. (T-ratio)	RIRS Coeff. (T-ratio)	RIRS _{cross} Coeff. (T-ratio)
Fixed effects	· · · · · · · · · · · · · · · · · · ·	· · · · ·	, , , , , , , , , , , , , , , , ,
INTERCEPT	3 91 (42,84)	3 90 (42 62)	3 90 (42 49)
RAGE	-0.04(-2.02)	-0.04(-2.54)	-0.04(-2.23)
R PATTERN ^a	0.39 (2.07)	0.39 (2.39)	0.38(-2.32)
R FEMALE	-0.40 (-2.16)	-0.31 (-1.91)	-0.29 (-1.78)
R HEALTH ^b			0.04 (0.23)
V FEMALE			-0.00 (-0.07)
V ⁻ AGE40 ^c	1.00 (10.96)	0.99 (10.64)	0.99 (10.58)
V ⁻ AGE55 ^c	1.54 (16.32)	1.52 (13.12)	1.52 (13.17)
V CHILDREN HH ^d	-1.06 (-12.57)	-0.96 (-10.91)	-0.94 (-10.73)
V JOB ^e	-0.23 (-3.05)	-0.23 (-3.23)	-0.24 (-3.30)
VACUTENESS	-0.23 (-3.03)	-0.31 (-3.27)	-0.31 (-3.33)
V PROB90 ^f	-1.29 (-17.69)	-1.29 (-11.25)	-1.28 (-11.16)
V AGE40*R AGE			-0.02 (-0.79)
V AGE55*R AGE			0.02 (0.65)
V FEMALE * R FEMALE			-0.10 (-0.79)
V_ACUTE.*R_HEALTH			-0.14 (-0.81)
Random effects			
δ_{im} (error variance between) 7%	1.419 (0.000)	1.516 (0.000)	1.528 (0.000)
ε_{ij} (error variance within)	2.471	1.297	1.267
V_FEMALE			0.083 (>.500)
V_AGE40 slope		0.564 (0.000)	0.524 (0.015)
V_AGE55 slope		1.561 (0.000)	1.545 (0.000)
V_CHILDRENHH slope		0.582 (0.001)	0.589 (0.044)
V_JOB slope		0.254 (0.000)	0.296 (0.000)
V_ACUTENESS slope		1.082 (0.000)	1.075 (0.000)
V_PROB90 slope		1.969 (0.000)	1.998 (0.000)
deviance	7867.24	7467.97	7476.97
# parameters / # random p.	12 / 2	39 / 29	53/37 14
N _V / N _R	1995 / 200	1995 / 200	1995 / 200

CAU

Christian-Albrechts-Universität zu Kiel

5. Results

- On <u>vignette level</u> fictive persons are favored depending on...
 - low age
 - high chance of success in case of a transplantation
 - children, who live in the same household
 - acuteness of transplantation
 - employment
- ...not depending on...
 - sex
 - marital status
 - children, who do not live in the same household

CAL

Christian-Albrechts-Universität zu Kiel

5. Results

- > On <u>respondent level</u> privileged ranks have been allocated by
 - older respondents
 - women
 - persons, who do not take into account the given example
- Women take the given example into consideration more often.
- Respondents follow different evaluating strategies.
- There are no tendencies of homophilia <u>between respondent</u> <u>and vignette level</u>.

6. Conclusion

- ➤ Laypersons follow the distributive justice norms of ...
 - need (acuteness of transplantation)
 - equality (no effect of sex and marital status)
- ➤ Laypersons decide in a rational way, accounting for ...
 - reproduction and care (sex, marital status, children in household)
 - contribution to the national economy (employment)
 - optimal use of resources (age, acuteness, chance of success)

C | A | ι

Christian-Albrechts-Universität zu Kiel

7. Discussion

- Limitation on student population:
 - small variance of respondents' age
 - no verification of homophilia to people with and without jobs possible
- Test of reciprocity norms
- Cross-national comparison of evaluation strategies in further planning (US – Germany)
- Factorial design study with living donations would be interesting, but could hardly be arrange.

CAU

Christian-Albrechts-Universität zu Kiel

Thank you for your attention!

Contact:

Christiane Gross Institute of Social Sciences, CAU Kiel cgross@soziologie.uni-kiel.de Tel: +49 (0) 431 / 880 - 4373