

Network Formation with Limited Foresight

Venice 02-12-2009

Dominik Morbitzer & Vincent Buskens

Department of Sociology / ICS Utrecht University

Introduction

- In order to understand the different characteristics observed in real-world networks, one needs to analyze how and why networks form, the impact of network structure on agents' outcomes, and the evolution of networks over time
- Models of network formation in several disciplines try to model these processes
- Examples:
 - Co-authorship in research
 - Collaborations among firms
 - Friendship relations

Models of Strategic Network Formation

- Actors realize that certain network positions are beneficial and choose their relations to optimize their benefits
- Jackson & Wolinsky (1996) consider network formation as a dynamic process in which pairs of actors sequentially decide whether to change their relations or not
- A network is considered stable if no actor wants to delete a link and no pair of actors wants to add a link
- Most models assume that actors are making these decisions myopically, meaning that they only look at their immediate network gains and neglect subsequent network changes
- However predictions of these models give unrealistic predictions and also fail in experimental tests

Metanetwork of Network Formation

Payoff from co-author model (Jackson & Wolinsky 1996):

$$u_i(g) = \sum_{j:ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right]$$

Farsightedness in Models of Network Formation

- *Perfect* Foresight (Page et al. 2005; Dutta et al. 2005; Herings et al. 2009; Pantz 2006) can be also considered an implausible assumption
- *Limited* Foresight (Berninghaus et al. 2008)
- Evidence of *limited* farsightedness from experimental research e.g. in behavioral game theory (Camerer 2003)
- People are heterogeneous in looking ahead

The Beauty Contest Game

- People have to choose numbers between 0 and 100. The number closest to some proportion p of the average number chosen wins the prize
- Results indicate that most people use between 1 and 2 steps of iterated reasoning
- Foreseeing reactions of others in network situations different compared to here
- Starting point of the model: Thinking one step ahead!

Looking One Step Ahead: Model Assumptions

- Networks form dynamically over time
- In each round one pair of actors decides whether or not to create or break a link
- Actors anticipate on (myopic) reactions of other network actors and themselves
- Actors can anticipate on reactions from actors with whom they are connected (own ties), that are in their local network (local) and all actors in the network (global)
- As expected benefits, actors can look at the minimum value, maximum value and mean value of possible network positions

Metanetwork of Network Formation

Payoff from co-author model (Jackson & Wolinsky 1996):

$$u_i(g) = \sum_{j:ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right]$$

Metanetwork of Network Formation

Payoff from co-author model (Jackson & Wolinsky 1996):

$$u_i(g) = \sum_{j:ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right]$$

Number of stable networks (with global/local information)

Size	PS	FLPS(min)	FLPS(mean)	FLPS(max)
2	1	1	1	1
3	1	2	2	2
4	1	3	3	2
5	1	7	2	1
6	2	14	2	1
7	2	45	2	2
8	2	153	4	2

Likelihood of stable networks, myopic predictions

	n=2	n=3	n=4	n=5	n=6	n=7	n=8
myopic							
full	1.0	1.0	1.0	1.0	.99	.99	.99
dyad	1.0						
other					.01	.01	0.1

Likelihood of stable networks, farsighted predictions

	n=2	n=3	n=4	n=5	n=6	n=7	n=8
min							
full	1.0	.50	.48	.54	.64	.75	.83
dyad	1.0	.50	.27	.09	.03	.01	.00
other			.25				

Likelihood of stable networks, farsighted predictions

	n=2	n=3	n=4	n=5	n=6	n=7	n=8
mean							
full	1.0	.50	.55	.91	.93	.99	.99
dyad	1.0	.50	.12				
other			.33	.09	.07	.01	.01

Likelihood of stable networks, farsighted predictions

	n=2	n=3	n=4	n=5	n=6	n=7	n=8
max							
full	1.0	.50	.29	1.0	1.0	.99	.99
dyad	1.0	.50					
other			.71			.01	.01

Scenario	Density	Average Payoff
Муоріс	.998 (.036)	2.14 (.049)
FLPS(min)	.904 (.197)	2.19 (.104)
FLPS(mean)	.988 (.075)	2.16 (.068)
FLPS(max)	.959 (.125)	2.16 (.057)

Future Research

- Other utility functions
- Experimental tests for the new predictions
- Including heterogeneity into theoretical model based on observed distributions to calibrate predictions
- Considering heterogeneity in farsightedness and risk preferences

Thank you for your attention!