Small Worlds and World Wide Web

Rolf Ziegler Institute of Sociology University of Munich

Rational Choice Sociology: Theory and Empirical Applications Venice International University, November 29 till December 3, 2010 Small Worlds and World Wide Web

- The Small World Experiment
- The ,New' Science of Networks
- Between Order and Randomness
- Small World Phenomena in the World Wide Web
- Properties of the Largest Communication Network
- Robustness of Large Networks

The Small World Experiment

Figure 1: Comparison between n(L), the number of completed chains of length *L*, taken from the original small-world experiment (bar graph) and from an example of the Watts et al. model with $N = 10^8$ individuals

The ,New' Science of Networks

Figure 2: Citation patterns in the Small World literature (Freeman 2004, p. 166) (white points: social networkers; black points: physicists; grey points: economists, biologists etc.)

Between Order and Randomness

Figure 3: Random Rewiring of a Regular Graph (*n* = 20 und *k* = 4)

Figure 4: The data shown in the figure are averages over 20 random realizations of the rewiring process and have been normalized by the values L(0), C(0) for a regular lattice. (All the graphs have n = 1.000 vertices and an average degree of k = 10 edges per vertex.)

Small World Phenomena in the World Wide Web

Network	Number of nodes	Average degree	distance		clustering		
			L _{observed}	L _{random}	C _{observed}	C _{random}	degree correlation
Film actors	449 913	113.4	3.48	2.75	0.78	0.00025	0.208
company directors	7 673	14.4	4.60	3.35	0.88	0.00188	0.276
math coauthorship	253 339	3.9	7.57	9.11	0.34	0.00002	0.120
physics coauthorship	52 909	9.3	6.19	4.88	0.56	0.00018	0.363

Table 1: Average distance, clustering and
degree correlation of some
observed and random networks

Properties of the Largest Communication Network

Figure 5: World and Messenger user population age pyramid. Ages 15–30 are overrepresented in the Messenger population.

Figure 6: Number of Messenger users per capita

(Color intensity corresponds to the number of users per capita in the cell of the grid.)

	Random	Communication
Age	0.030	0.162
Gender	0.434	0.426
Location (ZIP)	0.001	0.230
Country	0.046	0.734
Language	0.030	0.798

Table 2: Probability of users sharing an attributefor random pairs of people versusfor pairs of people who communicate.

(Average shortest path has length 6.6, the distribution reaches the mode at 6 hops)

Robustness of Large Networks

Figure 8: Change of geodesic distance after random removal or attack Internet 6,209 nodes and 12,200 edges; WWW 325,729 nodes and 1,498,353 edges

Figure 9: Relative size of the largest connected component in the Messenger communication network as a function of number of nodes removed

(green: random removal; blue: removal in order of node degree)

General promising areas for future research

General promising areas for future research

• Which properties of networks are the important ones to focus on?

General promising areas for future research

- Which properties of networks are the important ones to focus on?
- Developing more sophisticated models of networks, both to help us understand network topology and to study the processes taking place on networks

General promising areas for future research

- Which properties of networks are the important ones to focus on?
- Developing more sophisticated models of networks, both to help us understand network topology and to study the processes taking place on networks
- To understand the behavior and function of the networked systems

References

Albert, Réka, Hawoong Jeong and Albert-László Barabási (2000):

Error and attack tolerance of complex networks. In: Nature 406, 378-382.

De Sola Pool, Ithiel, and Manfred Kochen (1978/79): Contacts and Influence.

In: Social Networks 1, 5-51.

Freeman, Linton C. (2004): The Development of Social Network Analysis. Vancouver: Empirical Press.

Leskovec, Jure, and Eric Horvitz (2008): Planetary-Scale Views on an Instant-Messaging Network. Microsoft Research Technical Report MSR-TR-2006-186.
Newman, M. E. J. (2003): The Structure and Function of Complex Networks. In: SIAM Review, Vol. 45, No. 2, 167-256.

Schnettler, Sebastian (2009): A structured overview of 50 years of

small-world research. In: Social Networks 31, 165–178.

Travers, Jeffrey, and Stanley Milgram (1969): An Experimental Study of the Small World Problem. In: Sociometry, 32, 425-443.

Watts, Duncan J., Peter Sheridan Dodds and M. E. J. Newman (2002):

Identity and Search in Social Networks. In: Science 296, 1302-1305.

Watts, Duncan J., and Steven H. Strogatz (1998): Collective dynamics

of 'small-world' networks. In: Nature 393, 440-442.