Problem Model Experimental design Experimental evidence Discussion

The Logic of Relative Frustration Boudon's Sociological Theory and Experimental Evidence

References

Joël Berger Andreas Diekmann

ETH Zürich

Rational Choice Sociology Workshop Venice International University November 30, 2011

bergerj@ethz.ch

Problem	Model	Experimental design	Experimental evidence	Discussion	References
Outline					

- Experimental design
- Experimental evidence

5 Discussion

Puzzling findings: The American Soldier

QUESTION "Do you think a soldier with ability has a good chance for promotion in the Army?"

(Stouffer et al. 1965 [1949])

Puzzling findings: The American Soldier

- Relative frequency of promoted soldiers (2 years after joining the army):
- Military Police: 24%, Air Force: 47%

Model

Experimental design

Experimental evidence

Discussion

References

Puzzling findings: Tocqueville and the French Revolution

"So it would appear that the French found their condition the more unsupportable in proportion to its improvement."

(Tocqueville 1856: 214)

Problem

Model

Experimental design

Experimental evidence

Discussion

References

Puzzling findings: Durkheim's anomic suicide

 Increasing suicide rates in times of rapid economic growth.

(Durkheim 1999 [1897])

Additional chances, more frustration?

Raymond Boudon (1979) presents a game theoretical model, which

- ... specifies the conditions under which the paradoxical result, that additional chances lead to more frustration, occurs.
- ... clarifies the underlying mechanisms.
- The model has been specified by Raub (1984), expanded by Kosaka (1986) and discussed (e.g. Gambetta 2005).
- No experimental test.

• *N* players face the decision whether or not to invest resources *C* in a competition.

$$E_{invest}(k,n) = \begin{cases} \frac{k}{n}d_1 + \frac{n-k}{n}d_2 & \text{for } k < n \\ d_1 & \text{for } k \ge n \end{cases}$$

- k : Number of promotion opportunities
- *n* : Number of investors
- N : Total number of players

Competition and relative frustration

- Winners: Actors are satisfied if they invest successfully.
- Losers: Actors feel relatively frustrated if they invest and lose.
- Non-investors: Actors not choosing to invest are neutral.
- Main idea:
 - When gross benefit *B*, compared to the costs *C* and to *d*₃ (riskless alternative), is sufficiently high, an increase in *k* leads to a disproportionate increase in *n*.
 - As a consequence, there are more additional losers *n* − *k* than additional winners *k*.

Numerical example: k = 1

	number of other investors $(n-1)$					
player i	0	1	2	3	4	5
invest (p)	7.0	2.0	0.3	-0.5	-1.0	-1.3
\neg invest (1 – p)	1.0	1.0	1.0	1.0	1.0	1.0

● *N* = 6, *k* = 1

• payoffs:
$$d_1 = 7, d_2 = -3, d_3 = 1$$

rational solution: mixed strategy with p^{*}_{invest} = 0.4

$$E(Inv.) = (1-p)^{N-1} \cdot E(Inv., n-1 = 0) + {\binom{N-1}{1}}p(1-p)^{N-2} \cdot E(Inv., n-1 = 1) + {\binom{N-1}{2}}p^2(1-p)^{N-3} \cdot E(Inv., n-1 = 2) + {\frac{N-1}{2}}p^{N-1} \cdot E(Inv., n-1 = N-1) = d_3$$

Model predictions

Subjects and setting

- Subjects: 72 students (ETH Zurich)
- 12 groups of 6
- 6 periods
- 432 decisions
- CHF 10.- show up fee
- CHF 12.- for optional investment in the 6 competitions

Experimental evidence: satisfaction

Experimental evidence: investors, losers, winners

Investors (predictive margins, logit, cluster-robust se)

INVESTOR = 1	рт	se	diff
k=1	<mark>0.36</mark>	<mark>(0.05)</mark>	Ref.
k=2	<mark>0.55</mark>	<mark>(0.06)</mark>	0.19 ^{**}
k=5	<mark>0.90</mark>	<mark>(0.03)</mark>	0.54 ^{***}
low stake	0.60	(0.03)	Ref.
high stake	0.61	(0.03)	0.01
descending	0.54	(0.03)	Ref.
ascending	0.67	(0.04)	0.13**
second round	0.59	(0.03)	Ref.
first round	0.62	(0.04)	0.03
Pseudo-R ²	0.19		
Ν	432		

 $^{*}\rho < 0.05, \, ^{**}\rho < 0.01, \, ^{***}\rho < 0.001$

Losers (predictive margins, logit, cluster-robust se)

LOSER = 1	рт	se	diff
k=1	<mark>0.21</mark>	(0.05)	Ref.
k=2	<mark>0.23</mark>	<mark>(0.05)</mark>	0.02
k=5	<mark>0.10</mark>	<mark>(0.02)</mark>	<mark></mark>
low stake	0.19	(0.03)	Ref.
high stake	0.18	(0.03)	00
descending	0.13	(0.02)	Ref.
ascending	0.24	(0.03)	0.11***
second round	0.17	(0.03)	Ref.
first round	0.19	(0.03)	0.03
Pseudo-R ²	0.05		
Ν	432		

 $^{*}p < 0.05, \, ^{**}p < 0.01, \, ^{***}p < 0.001$

Satisfaction (predictions, OLS, cluster-robust se)

SATISFACTION	ŷ	se	diff
k = 1	<mark>5.2</mark>	<mark>(0.36)</mark>	Ref.
k = 2	<mark>5.5</mark>	<mark>(0.33)</mark>	<mark>0.35</mark>
k=5	<mark>7.5</mark>	<mark>(0.30)</mark>	2.30***
low stake	5.7	(0.34)	Ref.
high stake	6.4	(0.32)	0.74**
descending	6.3	(0.31)	Ref.
ascending	5.8	(0.35)	-0.45
second round	6.2	(0.30)	Ref.
first round	5.9	(0.35)	-0.25
R^2	0.10		
Ν	432		

 $^{*}p < 0.05, \, ^{**}p < 0.01, \, ^{***}p < 0.001$

Discussion

- Especially when there are 2 promotion chances, players invest more cautiously than the model predicts.
- As a consequence, the rate of frustrated losers remains constant.
- Therefore, the paradoxical effect, that higher opportunities lead to less mean satisfaction, does not occur.

Discussion

Further research

- Problem: Within-subjects-design \rightarrow order effects
- Solution: Between-subjects-design

	Opportunities k			
	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 5	
Invest dominant strategy			x	
		х	х	

References

- Boudon, R. (1979): Widersprüche sozialen Handelns. Neuwied.
- Durkheim, E. (1999): Der Selbstmord. Frankfurt/Main.
- Gambetta, D. (2005): Concatenations of Mechanisms. In: Hedström, P. & Swedberg, R. (Eds.): Social Mechanisms. Cambridge.
- Kosaka, K. (1986): A Model of Relative Deprivation. Journal of Mathematical Sociology, 12.
- Raub, W. (1984): Rationale Akteure, institutionelle Regelungen und Interdependenzen. Frankfurt am Main.
- Stouffer, S. et al. (1965): The American Soldier. Manhatten (Kansas).
- Tocqueville, A. (1856): The Old Regime and the French Revolution. New York.