Social Networks and Marriage Matching

Debra Hevenstone

18. November, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Introduction

Outline

- Background
 - Matching
 - Dating
 - Hypotheses
- Method
 - Simulation Design

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Experiment
- Results
- Future work
 - Simulation
 - Empirical
 - Limitations

- Background

Matching Algorithms

Matching Problems

- Goal is a stable match
 - One:one, one:N
 - Bipartite 1:1 (called "Marriage Problem")

- Algorithms assume
 - Full scope search
 - Lengthy search
- But real marriage search
 - Limited length search
 - Limited scope search

- Background

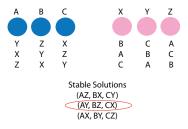
Matching Algorithms

Matching Problems: Algorithms with full scope search

- Medical graduates H.S. students Organ donors Rabbinical graduates Law school graduates
- \longleftrightarrow Hospitals
- $\longleftrightarrow \quad \text{Schools} \quad$
- $\longleftrightarrow \quad \text{Recipients}$
- \longleftrightarrow Synagogues

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 \longleftrightarrow Firms



- Background

Matching Algorithms

Matching Problems: Gale-Shapely (G-S) algorithm

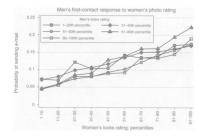
- N men and N women rank potential partners (no ties)
- Men propose to the most-preferred woman not yet proposed to
- Women accept if unmatched, or if proposal is improvement
- Up to $n^2 n + 1$ rounds to stable solution

- Background

Matching Algorithms

Matching Problems: G-S results & limitations

- Stable Solution
 - If a man prefers another, he must have already proposed and been rejected
 - If a woman prefers another, she must be less preferred than his partner


- Optimality
 - Men get best feasible partner
 - Women get worst feasible partner
- Real "marriage problem"
 - Limited time to search
 - Limited scope for search

Background

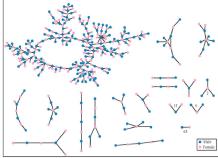
Matching Algorithms

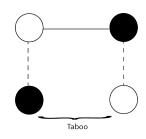
Empirical Evidence: Full scope search

- Full scope: Online dating platform
- Limited scope: Personal social network
- G-S algorithm predicting exchange of email/contact info

Internet dating less homophilous than real life (e.g. edu)

Günter, Hortacsu, and Ariely, 2010


Background


-Matching Algorithms

Empirical Evidence: Scope limited by dating history

- Simulate relationship histories
- Accurate prediction only limiting scope by relationship history

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Each circle represents a student and lines connecting students represent remantic relations occuring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone ese).

Background

Research Hypotheses

Hypotheses

	Simulation/Mechanism	Empirical Confirmation	
Match Utility	Unable to offer	Less happy relationships	
lower w/ limited scope	good matches meeting through frier		
Women's Utility	Offers to lower-ranked	Women happier	
higher w/ limited scope	Accepted offers	meeting through friends,	
lower w/ limited time	improve with time	less meeting young	
Dating History	Initial matches follow	Add Health evidence,	
loops with longer time/	social network, then	high school context	
limited scope, trees with	cycle w/in clique		
limited time/limited scope			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

-Simulation

-Method

Method: Agent Based Model (ABM)

- Initialize
 - Agents w/ heterogenous characteristics & preferences
 - Calculate match utility & partner rankings
- Construct social network
 - Set parameters
 - Assign edges
- Run G-S algorithm
 - Full scope (varied search length)
 - Scope limited to 2-hop network (varied search length)

-Simulation

-Method

Method: Initialization, heterogeneous agents

- N male agents & N female agents
- Symbolic characteristics & preferences

Attractiveness	$a = norm(\mu = 5, \sigma = 1)$
Intelligence	$s = norm(\mu = 5, \sigma = 1)$
Preference for	$\alpha = uniform(0, 1)$
partner's a	
Preference for	$=(1-\alpha)$
partner's <i>s</i>	

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Social N	letworks	and	Marriage	Matching
	1.10			

Simulation

-Method

Method: Initialization, match utility & partner rankings

- Cobb Douglas match utility
- Constant returns to scale
- Function of partner's characteristics & ego's preferences

$$u_i = a_j^{\alpha_i} s_j^{1-\alpha_i}$$

Ui	Utility of ego i
ai	Attractiveness of partner j
α_i	Importance of attractiveness in partner for ego i
Si	Intelligence of partner <i>j</i>
$1 - \alpha_i$	Importance of intelligence in partner for ego <i>i</i>

-Simulation

- Method

Method: Construct network, parameter settings

● ● ● Network Match	ing Simulation	
Dating Offers	1	-
Number of Networks	1	-
Average Network Degree (should be <(n-1)/2)	3	•
Number of Men	10	-
Number of Women	10	-
Coefficient: Impact of attractiveness on making new friends	.03	-
Coefficient: Impact of intelligence on making new friends	.03	-
Coefficient: Impact of similar attractiveness on making new friends	1	-
Coefficient: Impact of similar intelligence on making new friends	1	-
Coefficient: Impact of common friends on becoming friends	.1	-
Coefficient: Impact of already having friends on becoming friends	.1	-
	Network-Matching	
Path to where you want to save results	/Users/debrahevenstone/Documents/workspace/	
Run Simulation	Cancel	

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Social Networks and Marriage Matching	g
Simulation	

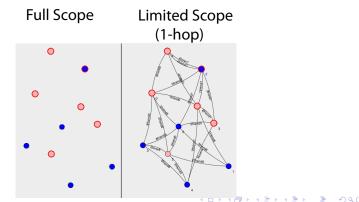
- Method

Method: Construct network, assign edges

- Pull two random agents
- Calculate edge probability

$$\begin{aligned} Pr_{i \cdot j = 1} &= \frac{e^{t}}{1 + e^{t}} \\ f &= \beta(\mathbf{x_i} + \mathbf{x_j}) + \gamma x_{ij} + \psi(D_i + D_j) + \gamma T_{ij} \\ \hline x_i & \text{individual characteristics (not preferences!)} \\ x_{ij} & \text{similarity of characteristics} \\ D_i & \text{current degree} \\ T_{ij} & \text{number of friends in common} \\ \beta, \gamma, \psi, \gamma & \text{coefficients} \end{aligned}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの


• if (random uniform $(0,1) > Pr_{i \cdot j=1}$), $(i \cdot j) = 1$

-Simulation

-Method

Method: Run G-S Algorithm (full & limited scope)

- Agents rank visible potential partners (no ties)
- Men propose to the most-preferred visible woman (not yet proposed to)
- Women accept if unmatched, or if better proposal
- X offer rounds

-Simulation

Experiment

Experiment: G-S matching w/ limited time and scope

Hypotheses

- Match Utility
 - Lower w/ limited scope (unable to find best matches)
- Female Utility
 - Higher with limited scope (easier competition)
 - Lower with limited time (no chance to dump less preferred)

-Simulation

- Experiment

Experiment: Settings

- Constant conditions
 - 50 men and women
 - Agent characteristic distributions ($norm(\mu = 5, \sigma = 1)$)
 - Coefficients controlling friendship network generation
- Experimental conditions
 - Number of offers: 1:10
 - Full scope search vs limited scope (2-hop) search

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

10 runs per experimental condition

-Simulation

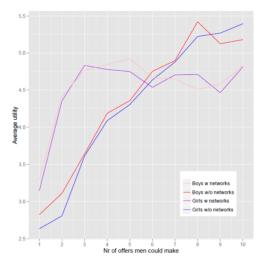
- Experiment

Experiment: Measured output

- Agent data
 - Individual characteristics
 - Partner characteristics
 - Match utility

Romantic history network (Intermediate steps)

- Density at maximum reach
- Size of the largest component
- Centralization


 $\frac{\sum (centrality_i - centrality_*)}{max \sum (centrality_i - centrality_*)}$

- Mean geodesic length (avg shortest path)
- Number of 4-cycles

-Simulation

- Experiment

Experiment: Results, match utility

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

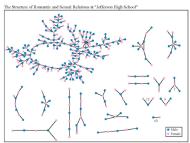
-Simulation

- Experiment

Experiment Results, match utility (OLS)

	coefficient	effect type
Ego variables		
isFemale	-3.68***	built-in
Attractive	1.00***	built-in
Intelligence	1.06***	built-in
Experimental variables		
Number of offers	2.43***	built-in
Number of offers ²	-0.37***	built-in
isNetworkMatch	5.55***	emergent?
Experiment-ego interactions		
isFemale* isNetworkMatch	0.46***	built-in
Attractive *isNetworkMatch	-0.40***	built-in
Intelligence *isNetworkMatch	-0.58***	built-in
isFemale*N. offers	0.46***	built-in
Ego-ego interactions		
isFemale*Attractive	0.38***	emergent?
isFemale*Intelligence	0.51***	emergent?

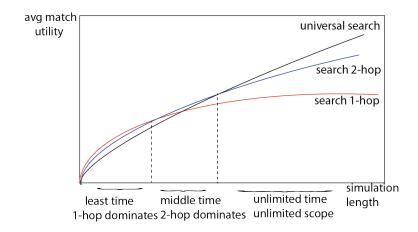
Also controlling for N. offers * network match


-Future Simulation Work

Future Simulation Output: Relationship histories

- Treat intermediate matching steps as relationship history
- Causal mechanism

limited search scope & limited time


vs taboos

Each circle represents a student and lines connecting students represent remantic relations occuring within the 6 menths preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

- Future Simulation Work

Future Simulation: Continuous information limits

-Future Empirical Work

Future Empirical Work:

Erasmus/high school dating & friendship networks

- Limitations
 - Search time 6 mo to 2 yrs
 - Unlimited search has boundary problems per definition
 - Cross sectional & retrospective
- Questions
 - What predicts friendship?
 - Does friendship predict partner?
 - Does partner satisfaction vary if matched over network?
 - Male/female differences?

-Future Empirical Work

Empirical Limitations: Timing and causality

- Study using Facebook data
- Goal: Identify the relationship edge
- Two hypotheses
 - Embeddedness
 Number of i & j's friends in common in i's network
 - Dispersion
 Dyads w/ no mutual friend once i and j are removed
- Causality

Dispersion is observed because edges formed *post*-relationship

Backstrom and Kleinberg, 2013

- Conclusion/Who Cares?

Conclusion/Who Cares

- Dating/online dating platforms
- Epidemiological implications
- Applications to job search
- Could imposed networks reduce search time?