

What is Wrong With "Hypotheses Sociology"? Or: How Theory-Driven Empirical Research Should Look Like

Katrin Auspurg and Josef Brüderl November 2016

Social Research in the "Era of Regression"

- Since the advent of regression, social researchers struggle with how to best use these statistical tools
- In the 1970ies many social researchers used regression "Y-centered": they threw in many variables to "explain" variance
- This a-theoretical practice was criticized by many.
 Instead it was suggested to guide variable selection by theory
 - Theory-driven empirical research
 - However, the practical implementation of theory-driven research often looked like this: researchers used one/several theories, deducted several hypotheses, and simply put **all** variables in the regression ("hypotheses sociology")
- Some authors argue that hypotheses sociology is often misguided
 - G. King (1986) How Not to Lie with Statistics
 - F. Elwert (2016) Comments On Backdoor-Based Identification

Auspurg/Brüderl, Hypotheses Sociology

Fundamental Rules of Causal Inference

- Our research problem
 - Identifying a causal effect
- Control for confounders
 - If you do not, you have an omitted variable bias
 - If some confounders are unobserved one has to use methods like IV, FE or RD
- Do not control for colliders
 - If you do, you have an endogenous selection bias
- Do not control for mediators
 - If you do, you have an overcontrol bias
- [If you want to get at the total causal effect]
 Auspurg/Brüderl, Hypotheses Sociology

>● Y

Hypotheses Sociology

- We are interested in the determinants of some outcome Y
- We use one/several theories to derive hypotheses
 - H1: D affects Y positively
 - H2: A affects Y negatively
- Then we estimate the following regression

$$Y = \alpha + \beta D + \gamma A$$

- β is the causal effect of D ("controlling for A", or "net of A")
- γ is the causal effect of A ("controlling for D", or "net of D")
- The fundamental problem of this strategy
 - It works only if the causal structure is of the type "multi-causality"

Hypotheses Sociology

 It no longer works if the causal structure deviates from multi-causality. For instance:

$$Y = \alpha + \beta D + \gamma A$$

- Here, only β is a (total) causal effect
- γ is only the direct effect, left after controlling for the mediator D
- Thus, it would be erroneous to interpret γ as a total causal effect
 - Nevertheless, this erroneous interpretation is applied by many users
- Obviously, this is a dramatic insight as much regression based empirical results are likely to be misinterpreted!

Regression needs a Causal Structure

• Here is another example (adapted from Elwert, 2016)

- β is a total causal effect (all non-causal paths are blocked)
- δ is the direct causal effect (mediator Exp controlled)
- γ is the direct causal effect (mediator Exp controlled) that is confounded (by unobservable U)
- Thus, it would be misleading to interpret each coefficient as a total causal effect

Regression needs a Causal Structure

- For identifying one causal effect we need one specially tailored regression model
- To estimate the causal effect of "Exp" $ln(Wage) = \alpha + \beta Exp + \gamma Educ + \delta Female$
- To estimate the causal effect of "Female" $ln(Wage) = \alpha + \delta Female$
- To estimate the causal effect of "Educ"

 $ln(Wage) = \alpha + \gamma Educ + \delta Female + U$

- Somehow one would have to account for the unobservable U Auspurg/Brüderl, Hypotheses Sociology

Controls

mediators, and will produce overcontrol bias

Auspurg/Brüderl, Hypotheses Sociology

Current Social Research Practice

- Shortcomings of the standard "hypotheses-driven" social research article:
 - Theory is used to derive hypotheses on the effects of a number of variables on the outcome. But mostly nothing is said on the (complete) causal structure
 - Thus theorizing is only "loosely" coupled to the research problem
 - "Controls" are entered usually without theoretical arguments
 - Therefore, it is highly likely that some of the fundamental rules are violated and that estimates will be biased / misinterpreted

Lessons

- Don't trust any article that infers many effects from a single regression without theorizing the complete causal structure of the research problem
 - Start yourself thinking about the causal structure. Draw a DAG.
 - From that you might be able to infer which effects are identified

Don't trust most regression based social science articles

- Stop teaching the hypotheses-driven approach to social research
 - Start teaching a "new style to causal analysis"

The New Style of Causal Analysis

- Focus on just one causal effect (X-centered)
 - What is the causal effect that your research problem aims at?
- Theorize on the complete causal structure
 - What are confounders, what are colliders?
 - Draw a DAG representing the causal structure
- Theorize on the intervening mechanisms (mediators)
 - No causation without a plausible mechanism
 - In the first step do not control for mediators (overcontrol bias)
 - Use them in a second step to explain the causal effect
- Think about identification
 - Given the causal structure, how can I identify the causal effect?

An Example for a Hypotheses-Driven Paper

- Authors BPZ investigate the factors that affect the survival chances of newly founded business firms (published in ASR)
 - Outcome: business failure rate
- Theories used to derive hypotheses
 - Human capital theory
 - Organizational ecology
- Hypotheses:
 - "We expect more schooling to improve a firm's survival chances"
 - "We expect work experience to show a decreasing payoff"
 - "Size at time of founding should increase survival chances"

- Altogether 19 hypotheses ("a rich set of hypotheses")!

An Example for a Hypotheses-Driven Paper

Independent Variable	Coefficient	t-Value
Human Capital		
Years of schooling	054	3.18
Years of work experience	051	3.92
Years of work experience squared/100	.101	2.97
Industry-specific experience	332'	3.53
Self-employment experience	.096	.86
Leadership experience	.190	1.39
Self-employed father	105	1.09
ORGANIZATIONAL CHARACTERISTICS		
Follower business	446`	3.46
Affiliated business	.278	2.06
Amount of capital invested natural log	034	3. 40
Number of employees natural log	451*	5.01
Registered in commercial registe	r793'	4.48
Specialist business	189	1.94
Innovative business	133	1.19
National market-scope	363°	3.59
ENVIRONMENTAL CHARACTERISTICS		
Location in Munich	.131	1.49
In construction	.522	1.38
In wholesale/retail trade	.512*	2.74
In transportation	.765*	3.19
Restaurant business	.227	.87
In computer services	.486	1.81
In other services	.249	1.32
Competition intensity	205	1.39
Seasonality	.132	1.45
Clustering of orders	519*	3.90

- The authors present one regression
- They interpret each coefficient as if it is a (total) causal effect

An Example for a Hypotheses-Driven Paper

 Some theoretical thoughts on the causal structure of the research problem show that the structure very likely is not of the "multi-causality" type

 Given this causal structure, the regression presented by the authors is plagued by an overcontrol-bias concerning the effect of "schooling"