

Age and response consistency in factorial surveys revisited

Christiane Gross¹ (joint work with Andrea Teti ²)

¹University of Hanover (²Charité — Universitätsmedizin Berlin, RKI)

Motivation

- Individual ability to process information depends on the respondent's age-related decline in cognitive ability (Andernach & Schunck 2014)
- No significant effect of respondents' age on consistency even in the condition of 30 vignettes or 12 dimensions (Sauer, Auspurg, Hinz & Liebig 2011)
- "... with higher levels of complexity, respondents who are older, have lower educational levels, or are less familiar with the FS topic are more likely to produce inconsistent responses" (Auspurg & Hinz 2015: 61)
- First question: Does response consistency in vignette judgements decrease with age?

Data from HOME study

- HOME: Housing Opportunities & Mobility in the Elderly
- Conducted by Institute of Medical Sociology in 2011/12 (Teti et al. 2014)
- Random sample from Berlin's public register in Wedding (60%) and Charlottenburg (40%)
- Population: aged >50 years with German language skills
- Exclusion criteria: no private home, partner loss during the last 6 months, care level 1–3
- Response rate of 14,6 %
- 104 face-to-face interviews (PAPI)

Respondent sample – age distribution

	Variable	Categories	n	%		
	Age	55–59	16	15.5		
		60–69	41	39.8		
		70–79	39	37.9		
		80–90	7	6.8		
	N=99 (Mean Age 68,2/ Median 68/ SD 7,90/ Min 55/ Max 90)					
	N=1,100 (Mea	I=1,100 (Mean Age 69,0/ Median 68/ SD 9,15/				
	Min 54/ Max 99)					

Vignettes

Vignette choices between moving to age-appropriate housing versus staying in the old apartment/house

Setting up the vignettes

Levels	/dimensions	Category 1	Category 2
1	Place attachment (District)	current	new
2	Public transportation (walking time)	2 min	12 min
3	Social network (proximity of family)	near	far away
4	Household amenities 1 (lift)	yes	no
5	Household amenities 2 (bathroom)	roll-in shower	bathtub
6	Household amenities 3 (balcony)	no steps	sunny

randomized vignette selection

How we measure inconsistency

- 1) OLS-Regression for each respondent
 - dependent variable: probability of moving
 - covariates: vignette characteristics
 - → inconsistency: absolute value of residuals per respondent (respondent specific error term)
- 2) Random-intercept model
 - dependent variable: absolute value of residuals per respondent
 - covariates on level 2: respondent characteristics
- Largely we follow Sauer et al. (2011) with two exceptions:
 - absolute values of residuals (not squared residuals)
 - regression for each respondent (not fixed-slope models)

Results (first question)

Source: Teti, Gross, Knoll, Blüher 2016: 729

Results (first question) GLS regressions on absolute value of residuals (inconsistency) by size of household

	Model 1: Full sample		Model 2: One-person household		Model 3: Multiperson household	
	β	SE	β	SE	β	SE
Age (continuous)	0.015	0.056	0.010	0.099	-0.036	0.074
Low educational level (ref.)	_	_	_	_	_	_
Intermediate educational level	-0.028	0.057	-0.048	0.093	-0.057	0.076
High educational level	-0.021	0.062	-0.054	0.120	-0.012	0.072
Household net equivalent income <€1,250 (ref.)	_	_	_	_	_	_
€1,250-3,000	-0.228****	0.065	-0.261**	0.092	-0.073	0.134
>€3,000	-0.277****	0.069	-0.277	0.170	-0.144	0.139
Employed $(I = yes)$	0.116*	0.056	0.057	0.114	0.127*	0.062
Migration background $(1 = yes)$	-0.048	0.048	-0.093	0.104	0.006	0.056
Intention to move $(1 = yes)$	-0.029	0.048	0.060	0.085	-0.135*	0.067
Gender $(I = female)$	0.043	0.048	0.021	0.090	0.058	0.055

Source: Teti, Gross, Knoll, Blüher 2016: 730

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Results (so far)

Inconsistency of vignette judgments increases with ...

higher age of respondents (Hypothesis 1).	(no effect)
decreasing educational level (Hypothesis 2).	(no effect)
decreasing income (Hypothesis 3).	(one-person hh)
with status unemployed (Hypothesis 4).	(pos. effect)
migration background (Hypothesis 5).	(no effect)
no intention to move (Hypothesis 6).	(multi-person hh)

Teti A, Gross C, Knoll N, Blüher S (2016) Feasibility of the Factorial Survey Method in Ageing Research: Consistency Effects Among Older Respondents. *Research on Aging* 38: 715–741.

Further question (same data, same approach)

Motivation

- "with large numbers of vignettes and dimensions, respondents tend toward simplifying heuristics that ignore some dimensions" (Auspurg & Hinz 2015)
- Vignette judgements may be perfectly consistent within a respondent, but only e.g. one (out of six) dimension may be accounted for
- Second question: Do respondents simplify heuristics in older age?

How we measure "accounting for dimensions"

- 1) OLS-Regression for each respondent
 - dependent variable: probability of moving
 - covariates: vignette characteristics
 - \rightarrow "accounting for dimensions": respondent specific absolute t-value (avg.)
- 2) Bivariate Association of age and respondent specific absolute tvalue (avg.)

Further question (same data, same approach)

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Conclusions

- We find no association of age and consistency of vignette judgements in sample of people aged 50+
- Educational background may be no good determinant for cognitive abilities in older cohorts (better take individual income)
- Respondents' lack of time may increase inconsistency of answers (indicated by employment effect)
- Determinants of inconsistency may vary due to size of household (oneperson vs multi-person hh) when examining relocation decisions
- We find no association of age and number of vignettes that have been accounted for

Limitations and future research

- No (experimental) variation of ...
 - number of vignettes (10)
 - dimensions (6)
 - modes (PAPI)
- All vignette characteristics were binary
- No record of respond time
- First (and only) consistency analysis of FS with elderly respondents

Thank you for your attention!

