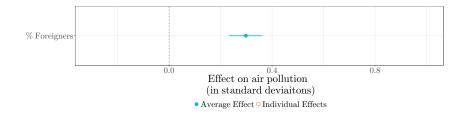


Explaining Regional Differences in Environmental Inequality A Multi-Level Assessment of German Cities

Tobias Rüttenauer

Department of Social Sciences TU Kaiserslautern

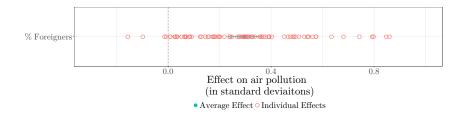
November 22, 2017 Analytische Soziologie Venice malytical Strateg


ilts Conclusion D O

Aim of this study

Environmental inequality in Germany

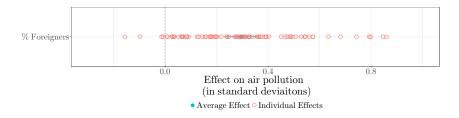
 Foreign-minorities are affected by disproportionately high amount of environmental pollution


ilts Conclusion D O

Aim of this study

Environmental inequality in Germany

 Foreign-minorities are affected by disproportionately high amount of environmental pollution


ilts Conclusion D O

Aim of this study

Environmental inequality in Germany

 Foreign-minorities are affected by disproportionately high amount of environmental pollution

 \Rightarrow How can we explain this variation between the cities?

ts Conclusion

Theoretical Mechanisms

Selective siting

- Lower political protest of minorities
- Lower land / housing prices where minorities live
- \Rightarrow Facilities are sited close to minorities

Selective migration

- Socio-economic resources
- Housing discrimination
- \Rightarrow Minorities move into polluted areas

(Campbell et al., 2015; Crowder and Downey, 2010; Mohai and Saha, 2015)

ts Conclusion

Theoretical Mechanisms

Selective siting

- Lower political protest of minorities
- Lower land / housing prices where minorities live
- \Rightarrow Facilities are sited close to minorities

Selective migration

- Socio-economic resources
- Housing discrimination
- \Rightarrow Minorities move into polluted areas

(Campbell et al., 2015; Crowder and Downey, 2010; Mohai and Saha, 2015)

lts Conclusio O O

Between-city variation

Selective siting

- Political efficacy of majority group
- Residential segregation

Selective migration

- Economic inequality (minority vs. majority)
- Residential segregation

But:

- Do a poor job of explaining environmental inequality (Downey, 2007)
- Studies 'fail to take the spatial distribution of environmental hazards within metropolitan areas into account' (Downey, 2007, p. 970)
 See also Downey (2005); Elliott and Frickel (2015)

lts Conclusio

Between-city variation

Selective siting

- Political efficacy of majority group
- Residential segregation

Selective migration

- Economic inequality (minority vs. majority)
- Residential segregation

But:

- Do a poor job of explaining environmental inequality (Downey, 2007)
- Studies 'fail to take the spatial distribution of environmental hazards within metropolitan areas into account' (Downey, 2007, p. 970)
 See also Downey (2005); Elliott and Frickel (2015)

ilts Conclusio D O

Between-city variation

Selective siting

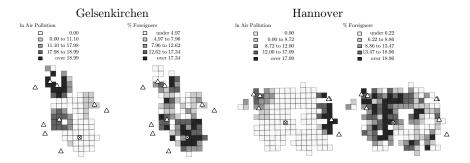
- Political efficacy of majority group
- Residential segregation

Selective migration

- Economic inequality (minority vs. majority)
- Residential segregation

But:

- Do a poor job of explaining environmental inequality (Downey, 2007)
- Studies 'fail to take the spatial distribution of environmental hazards within metropolitan areas into account' (Downey, 2007, p. 970)
 See also Downey (2005); Elliott and Frickel (2015)



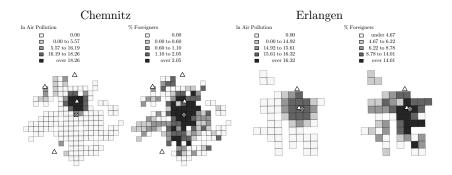
Analytical S

Results Conc 000 0

Low Environmental Inequality

 Δ Facility location \blacksquare City centre

- \Rightarrow Minorities cluster around the city centre
- \Rightarrow Pollution occurs far from the city centre



Analytical S

s Conclusion

High Environmental Inequality

 Δ Facility location \blacksquare City centre

- \Rightarrow Minorities cluster around the city centre
- \Rightarrow Pollution occurs close to the centre

esults Conclusio 00 0

Data

German census 2011

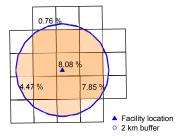
- 1 km² grid over 79 German cities (\geq 100,000 inhabitants)
- Final sample: 9,061 grid cells
- Average number of inhabitants: 2,650 (median: 1,717)
- Predictor variable: % foreigners
- Main controls: Population density, % vacant housing

E-PRTR

- Industrial facilities exceeding a pollutant-specific threshold
- 366 facilities reporting industrial emissions to air within cities
- Response variable: industrial air pollution (In kg)

SOCIAL SCIENCES

Analytical Strategy


ts Conclusion O

Merging Strategy

Proportional Overlap

- 2 km buffer around facility location
- Overlap of buffer and census cell
- Allocation proportionate to overlap
- (e.g. Banzhaf and Walsh, 2008)

esults Conclusion

City level variables

INKAR 2011

- Economic Inequality: Unemployment ratio (non-Germans/Germans)
- Political efficacy: Voter turnout

Segregation

Spatial information theory index \tilde{H}_{2000} (Reardon and O'Sullivan, 2004)

Facility centrality

$$FC_i = \left(rac{1}{M}\sum_{j=1}^M d_{ij} \over max(\tilde{\boldsymbol{d}}_i)
ight)^{-1},$$

where d_{ij} is the distance between each facility j = 1, ..., M in the 2km surrounding of city i and the city's centre, and \tilde{d}_i a vector of the distances between the city centre and all coordinates of the city's boundary.

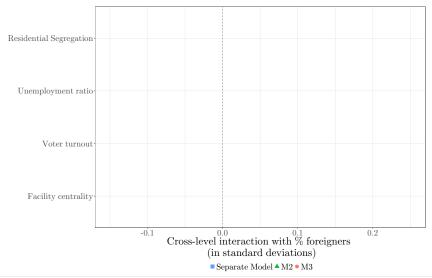
ults Conclusio O O

Method

City-fixed effects multi-level model

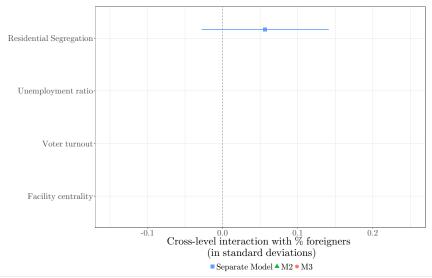
- First level: within-city correlation
- Random slope: variation of within-effect between cities
- Parameter of interest: cross-level interaction

 $pollution_{ij} = \beta_{0j} + \beta_1 forgn_{ij} + \beta_2 forgn_{ij} segr_j + u_{1j} forgn_{ij} + \varepsilon_{ij}$


for all i = 1, ..., N observations and j = 1, ..., J cities. This is achieved by within-group demeaning the data (Enders and Tofighi, 2007) and estimating a multilevel random-slope model.

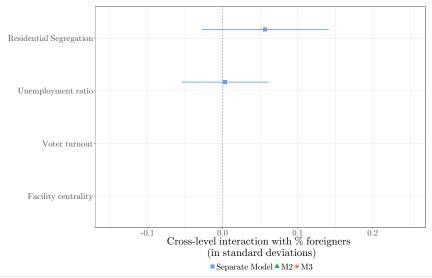
Results Conclusion

Dependent variable: In Pollution


Rüttenauer

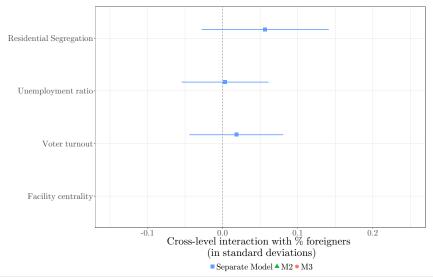
Results Conclusion

Dependent variable: In Pollution


Rüttenauer

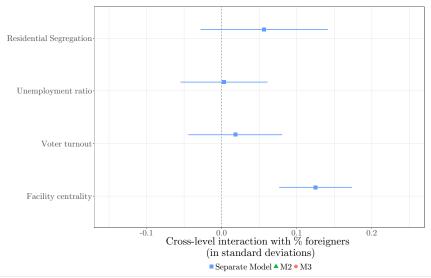
Results Conclusion

Dependent variable: In Pollution


Rüttenauer

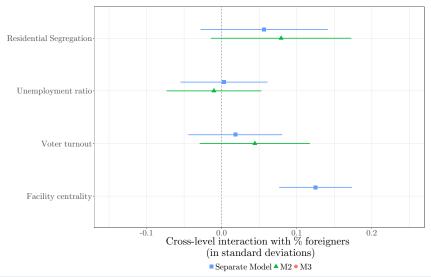
Results Conclusion

Dependent variable: In Pollution



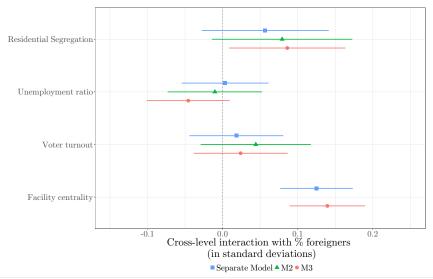
Results Conclusion

Dependent variable: In Pollution


Rüttenauer

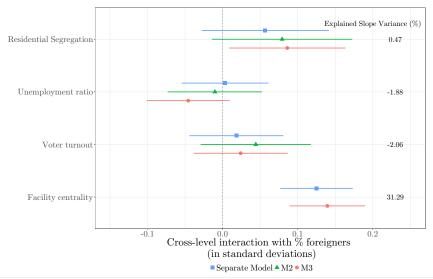
Results Conclusion

Dependent variable: In Pollution


Rüttenauer

Results Conclusion

Dependent variable: In Pollution


Rüttenauer

Results Conclusion

Dependent variable: In Pollution

Results

0.00

What does it mean?

1) Confounding mechanism

- Process 1: Minorities cluster in central cities
- Process 2: High pollution in inner cities
- \Rightarrow Two independent processes

2) Mediating mechanism

- Facilities are centrally sited *because* minority share is high
- Minorities cluster in inner city because pollution is high
- \Rightarrow Causal mechanism of selective siting or migration?

Results

0.00

What does it mean?

1) Confounding mechanism

- Process 1: Minorities cluster in central cities
- Process 2: High pollution in inner cities
- \Rightarrow Two independent processes

Mediating mechanism

- Facilities are centrally sited because minority share is high
- Minorities cluster in inner city because pollution is high
- \Rightarrow Causal mechanism of selective siting or migration?

Dependent variable: facility centrality

	M1	M2	M3	M4	M5
Centralization index ^a	0.021				0.215
	(0.114)				(0.158)
\tilde{H}_{2000}		-0.103			-0.178
		(0.113)			(0.148)
Unemployment ratio		. ,	0.295**		0.208 [†]
			(0.109)		(0.122)
Voter turnout			. ,	0.243*	0.190
				(0.111)	(0.136)
R ²	0.000	0.011	0.087	0.059	0.130
Adj. R ²	-0.013	-0.002	0.075	0.047	0.083
Num. obs.	79	79	79	79	79

***p < 0.001, **p < 0.01, *p < 0.05, $^{\dagger}p < 0.1$. All variables are centered around their mean and scaled by their standard deviation. Standard errors in parentheses.

 $^{\rm a}$ Relative Centralization Index (RCE) as described in Massey and Denton (1988): proximity of the foreign population to the city centre relative to the proximity of the German population to the city centre.

Conclusion

Causal mechanisms of environmental inequality

- Challenges the importance of selective siting and migration
- Magnitude driven by centrality of minorities and pollution
- Independence of facility centrality and minority centrality?

Campbell et al. (2015)

 Simulations don't reach a realistic level of environmental inequality when just assuming selective siting and migration

Limitations

- \Rightarrow Only industrial air pollution
- \Rightarrow Only 'proxies' of selective siting & migration
- \Rightarrow Results are only descriptive
- \Rightarrow (Social) mechanism?

Conclusion

Causal mechanisms of environmental inequality

- Challenges the importance of selective siting and migration
- Magnitude driven by centrality of minorities and pollution
- Independence of facility centrality and minority centrality?

Campbell et al. (2015)

 Simulations don't reach a realistic level of environmental inequality when just assuming selective siting and migration

Limitations

- \Rightarrow Only industrial air pollution
- \Rightarrow Only 'proxies' of selective siting & migration
- \Rightarrow Results are only descriptive
- \Rightarrow (Social) mechanism?

Conclusion

Causal mechanisms of environmental inequality

- Challenges the importance of selective siting and migration
- Magnitude driven by centrality of minorities and pollution
- Independence of facility centrality and minority centrality?

Campbell et al. (2015)

 Simulations don't reach a realistic level of environmental inequality when just assuming selective siting and migration

Limitations

- \Rightarrow Only industrial air pollution
- \Rightarrow Only 'proxies' of selective siting & migration
- \Rightarrow Results are only descriptive
- \Rightarrow (Social) mechanism?

SOCIAL SCIENCES

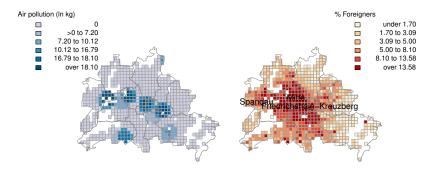
Thank you very much!

- Banzhaf, H. S. and Walsh, R. P. (2008). Do people vote with their feet? An empirical test of Tiebout's mechanism. American Economic Review, 98(3):843–863.
- Campbell, H. E., Kim, Y., and Eckerd, A. (2015). Rethinking Environmental Justice in Sustainable Cities: Insights from Agent-Based Modeling. Routledge Studies in Public Administration and Environmental Sustainability. Routledge, New York and London.
- Crowder, K. and Downey, L. (2010). Inter-neighborhood migration, race, and environmental hazards: Modeling micro-level processes of environmental inequality. *American Journal of Sociology*, 115(4):1110–1149.
- Downey, L. (2005). The unintended significance of race: Environmental racial inequality in Detroit. Social Forces, 83(3):971–1007.
- Downey, L. (2007). US metropolitan-area variation in environmental inequality outcomes. Urban Studies, 44(5-6):953–977.
- Elliott, J. R. and Frickel, S. (2015). Urbanization as socioenvironmental succession: The case of hazardous industrial site accumulation. *American Journal of Sociology*, 120(6):1736–1777.
- Enders, C. K. and Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. *Psychological Methods*, 12(2):121–138.
- Massey, D. S. and Denton, N. A. (1988). The dimensions of residential segregation. *Social Forces*, 67(2):281–315.
- Mohai, P. and Saha, R. (2015). Which came first, people or pollution? A review of theory and evidence from longitudinal environmental justice studies. *Environmental Research Letters*, 10(12):125011.
- Reardon, S. F. and O'Sullivan, D. (2004). Measures of spatial segregation. *Sociological Methodology*, 34(1):121–162.

Summary Statistics

Table: Summary Statistics

Statistic	Ν	Mean	St. Dev.	Min	Max
In Air pollution	9,061	4.02	6.65	0.00	20.93
% Foreigners	9,061	9.00	8.43	0.00	87.10
Population	9,061	2,649.91	2,887.97	3.00	23, 379.00
% 65 and older	9,061	20.57	7.44	0.00	99.60
% Vacant housing	9,061	3.50	3.54	0.00	60.00
Living space (m ²)	9,061	41.74	5.95	11.00	95.90
\tilde{H}_{2000}	79	0.03	0.01	0.01	0.08
$ ilde{D}_{2000}$	79	0.17	0.05	0.08	0.30
Unemployment ratio	79	2.34	0.37	1.28	3.43
Voter turnout	79	69.18	3.75	60.10	77.10
Facility centrality	79	2.78	2.18	0.00	17.78

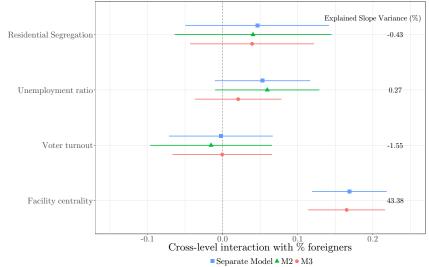


Descriptives

Multilevel Model

Berlin

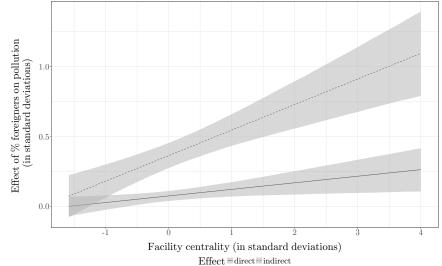
Multilevel Models


Multilevel-Models

	M4	M5	M6
Census cell level			
% Foreigners	0.232*** (0.034)	0.254*** (0.037)	0.245*** (0.031)
Cross-level interactions	()		()
% Foreigners $\times \tilde{H}_{2000}$		0.079 [†] (0.048)	0.086* (0.040)
$\%$ Foreigners $\times \textsc{Unemployment}$ ratio		-0.010	-0.046
% Foreigners×Voter turnout		(0.032) 0.044 (0.037)	(0.028) 0.024 (0.032)
% Foreigners×Facility centrality		(0.037)	0.139*** (0.026)
Fixed effects	yes	yes	yes
Random slope	yes	yes	yes
AIC	23635.200	23680.777	23672.149
Ν	9061	9061	9061
N cluster	79	79	79
σ^2 % Foreigners	0.066	0.068	0.044
σ^2 Residual	0.780	0.780	0.780

***p < 0.001, **p < 0.01, *p < 0.05, $^{\dagger}p < 0.1$. Multilevel models with group centered first level variables. All variables are scaled by their standard deviation. Standard errors in parentheses. Controls: Population, % 65 and older, % Vacant housing, Living space.

Dependent variable: In Pollution (tox-weighted)



Descriptives

Multilevel Models

Spatial Model

