Can Theory-Guided Research Be Improved By Mindless Specification Robustness Algorithms?

Katrin Auspurg & Josef Brüderl
LMU Munich

Seminar “Analytical Sociology”
November 18th 2019, VIU
Background

• We want to identify a (total) causal effect

\[X \rightarrow Y \]

• With observational data
 – Causal inference is threatened by several potential biases

• Assumption: There is one correct model specification that allows for unbiased causal inference
 – Theory tells the researcher which model specification is the correct one (theory-guided research)
Three Fundamental Specification Errors

- Not controlling for a confounder
 - omitted variable bias

- Controlling for a collider
 - collider bias

- Controlling for a mediator
 - overcontrol bias
Theory-Guided Research

- Theorizing about the causal structure of the research question

- Correct model specification
 \[Y = \alpha + \beta X + \gamma Z \]

- Mis-specified models
 \[Y = \alpha + \beta X \]
 \[Y = \alpha + \beta X + \delta W \]
 \[Y = \alpha + \beta X + \gamma Z + \delta W \]
Does Theory-Guided Research Work?

• Even very competent researchers may fail in finding the correct specification
 – Young (2009) in re-analyzing Barro/McCleary (2003) concludes:
 “… top level competence … is not a solution to the problem of model uncertainty”

• Most social science theories are not informative enough to unambiguously identify the correct specification
 – Statistical models are a “garden of forking paths” and theory does not help (Gelman/Loken 2014)
 – “Analytical flexibility”
Does Theory-Guided Research Work?

• Finally, there are several mechanisms that make social researchers to defy theory-guided specification search:
 – Incentives are such that researchers may strive not for correct but for “significant” results (p-hacking, publication bias)
 – Current research practice does not require much effort in getting the correct model specification
 - Kohler et al. (2019) show that only 25% of all ESR (2016/17) papers justify covariate selection

• Mis-specified models are widespread in (theory-guided) social research
Specification Robustness Algorithms

• Recently several specification robustness algorithms have been suggested
 – Specification curve, multiverse analysis, …
• Multimodel analysis (*mrobust*) (Young/Holsteen 2017)
 – Focus on **one** treatment effect
 – Allows for different statistical models / functional forms / operationalizations / controls
 – Runs models with all possible combinations of model ingredients
 - Plots distribution of treatment effect estimates (modeling distribution)
 - Provides influence statistics on treatment effect estimates
 – In the following: robustness to the choice of controls
Can Multimodel Analysis Help?

• Not helpful are
 – Optimal specification search algorithms
 – (Bayesian) model averaging

• Multimodel analysis might be helpful
 – It increases transparency
 - Model robustness analysis: “Are the results robust?”
 – It might stimulate theoretical reflection
 - Model influence analysis: “What modelling decisions are critical for obtaining the result and what is their theoretical justification?”

• Multimodel analysis starts from a given set of controls, thus it checks robustness “inside” the model
 – it cannot help identifying omitted variable bias,
 – but it can help identifying collider bias and/or overcontrol bias
Example: Are Female Hurricanes More Deadly?

- Jung et al. (2014) Female Hurricanes Are Deadlier Than Male Hurricanes. PNAS
- Mechanism: Residents tend to dismiss the destructive potential of storms with feminine names and take fewer precautions

Source: Munoz/Young 2018
Example With an Experimental Benchmark

• Effect of job training on wages (re-employment after unemployment)
 – Field experiment (n=445) (LaLonde 1986)
 – CPS cross-sectional data (n=16,177)
 – Outcome: wage
 – Treatment: program participation dummy
 – Controls: past wages and unemployment status, age, race, marital status, and education

• Results of robustness analysis
 – Experiment: mean 1.69, almost no modeling variation
 - “The conclusions are given by the data, not by the choice of statistical model.”
 – CPS: mean -0.82, large modeling variation
 - Depending on model specification one can conclude anything
Example With an Experimental Benchmark

Source: Munoz/Young 2018

Specifications close to experimental benchmark: not controlling for „age“ and „marital status“
An Example Modeling Distribution

- A recent study reports a strong negative effect of “proportion foreigners” on support for the welfare state
 - Schmidt-Catran/Spies. 2016. ASR. (SCS)
- A re-analysis argues that this results from model mis-specification
 - Auspurug/Brüderl/Wöhler. 2019. ASR.

SCS specification:
- controls, regional FE

New element added by us:
- heterogeneous time trend

Obtained with \texttt{mrobust}
(see Young/Holsteens 2017)
Misuse: „Optimizing“ the Model

- Only models with FE + heterogeneous time trend
- Influence statistics say: not controlling for „GDP“ reduces the coefficient strongly
 - Now the effect of „foreign“ is significantly negative!

<table>
<thead>
<tr>
<th>Model Influence</th>
<th>Marginal Effect of Variable Inclusion</th>
<th>Percent Change From Mean(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gdppc</td>
<td>0.0109</td>
<td>-22.0%</td>
</tr>
<tr>
<td>unemplr</td>
<td>-0.0049</td>
<td>9.8%</td>
</tr>
<tr>
<td>iEMPLSTAT</td>
<td>-0.0043</td>
<td>8.6%</td>
</tr>
<tr>
<td>leftright</td>
<td>-0.0031</td>
<td>6.1%</td>
</tr>
<tr>
<td>male</td>
<td>-0.0027</td>
<td>5.3%</td>
</tr>
<tr>
<td>i.EDUC</td>
<td>0.0020</td>
<td>-4.0%</td>
</tr>
<tr>
<td>i.COMSIZE</td>
<td>-0.0019</td>
<td>3.8%</td>
</tr>
<tr>
<td>age</td>
<td>0.0010</td>
<td>-2.0%</td>
</tr>
<tr>
<td>income.hh_equiv</td>
<td>-0.0006</td>
<td>1.2%</td>
</tr>
<tr>
<td>married</td>
<td>-0.0006</td>
<td>1.2%</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0477</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.9600</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• Pay attention to model uncertainty (Young 2018)
 – The “footnote approach” to robustness is insufficient
• Use algorithms like mrobust
 – This creates transparency
 – This forces researchers to justify their model specification
• Use algorithms and mind!
 – Only mindful specification algorithms are helpful