Environmental Inequality and Selective Migration: A Household-Level Panel Study on How Pollution Affects the Probability of Moving

Tobias Rüttenauer & Henning Best

Nuffield College & TU Kaiserslautern

Venice Seminar
November 18, 2019
Environmental inequality

‘hundreds of studies conclude that, in general, ethnic minorities, indigenous persons, people of color, and low-income communities confront a higher burden of environmental exposure from air, water, and soil pollution’ (Mohai et al., 2009, p. 406)
Environmental inequality

‘hundreds of studies conclude that, in general, ethnic minorities, indigenous persons, people of color, and low-income communities confront a higher burden of environmental exposure from air, water, and soil pollution’ (Mohai et al., 2009, p. 406)

In Air Pollution

<table>
<thead>
<tr>
<th></th>
<th>0.00</th>
<th>0.00 to 11.09</th>
<th>11.09 to 17.98</th>
<th>17.98 to 18.99</th>
<th>over 18.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Foreigners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under 5.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.51 to 6.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.88 to 9.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.44 to 13.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>over 13.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gelsenkirchen Leverkusen
Low Environmental Inequality High Environmental Inequality
Facility location City centre
Research Question

Why are minorities in Germany disproportionately exposed to environmental pollution?

▶ Focus on selective out-migration
Research Question

Why are minorities in Germany disproportionately exposed to environmental pollution?

▶ Focus on selective out-migration

Why should we care?

▶ EU: air pollution caused 400,000 premature deaths in 2016 (European Environment Agency, 2019)
Theoretical mechanisms

Selective siting

\Rightarrow Facilities are sited in minority / poor regions

(Banzhaf et al., 2019; Crowder and Downey, 2010)
Theoretical mechanisms

Selective siting
⇒ Facilities are sited in minority / poor regions

Selective migration
⇒ Natives / rich households move out of polluted areas
⇒ Minorities / poor households move into polluted areas
▶ Housing costs
▶ Housing discrimination
▶ Residential preferences
(Banzhaf et al., 2019; Crowder and Downey, 2010)
Theoretical mechanisms

Selective siting
⇒ Facilities are sited in minority / poor regions

Selective migration
⇒ Natives / rich households move out of polluted areas
⇒ Minorities / poor households move into polluted areas
▶ Housing costs
▶ Housing discrimination
▶ Residential preferences
(Banzhaf et al., 2019; Crowder and Downey, 2010)

Are households selectively ‘fleeing the nuisance’?
Previous results

On the aggregated level

▶ Very mixed results (e.g. Banzhaf et al., 2019)
Previous results

On the aggregated level
▶ Very mixed results (e.g. Banzhaf et al., 2019)

Individual level: in-migration
▶ Evidence for selective in-migration of minorities
 (Best and Rüttenauer, 2018; Crowder and Downey, 2010)
▶ Moderate income selectivity (Best and Rüttenauer, 2018)
Previous results

On the aggregated level

► Very mixed results (e.g. Banzhaf et al., 2019)

Individual level: in-migration

► Evidence for selective in-migration of minorities
 (Best and Rüttenauer, 2018; Crowder and Downey, 2010)
► Moderate income selectivity (Best and Rüttenauer, 2018)

Individual level: out-migration

► No selective out-migration based on race
 (Crowder and Downey, 2010)
► No test of income selectivity in out-migration
Out-migration: What do we expect?

Income

- Higher demand for / prices in clean areas
- Willingness to pay for environment increases with income (Liebe et al., 2010)

⇒ Selective out- and in-migration
Out-migration: What do we expect?

Income
- Higher demand for / prices in clean areas
- Willingness to pay for environment increases with income (Liebe et al., 2010)
⇒ Selective out- and in-migration

Minority status
- Housing costs
- Housing discrimination
- Residential preferences
Out-migration: What do we expect?

Income

- Higher demand for / prices in clean areas
- Willingness to pay for environment increases with income (Liebe et al., 2010)

⇒ Selective out- and in-migration

Minority status

- Housing costs
- Housing discrimination
- Residential preferences

⇒ Only plausible minority effect in out-migration runs through income
Data

German SOEP

- 13,247 observations and 3,792 households
- Unbalanced (min. 2 waves)
- Sample: min. 1 location change, min 1 stationary period

Variables

- Response: relocation (1 – 0)
- Main covariates I: impairment through air pollution (1 – 5)
- Main covariates II: immigrant (1st / 2nd gen), hh equivalence income
- Controls: year, age (5-year intervals), child(ren) in household, partner in household, distance to nearest city centre, housing conditions
Chamberlain’s Correlated Random Effects (CRE) probit

\[
P(y_{it} = 1|x_i) = \Phi(\psi + x_{it}\beta + \bar{x}_i\xi),
\]

using the decomposition of the individual-specific effects \(c_i = \psi + \bar{x}_i\xi + a_i\), where \(\Phi(\cdot)\) is a standard normal cumulative distribution function, \(\bar{x}_i\) are the individual-specific averages of \(x_{it}\) (Chamberlain, 1982; Mundlak, 1978; Wooldridge, 2010)

Advantage

- \(\beta\) are within estimates (like FE)
- allows to compute AMEs for \(\hat{\mu}_c \pm \hat{\sigma}_c\)
Table: Correlated random effects probit. Dependent variable: move-out.

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution(t-1)</td>
<td>0.051</td>
<td>-0.013</td>
<td>0.177***</td>
<td>0.125***</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.039)</td>
<td>(0.024)</td>
<td>(0.024)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Household income(t-1)</td>
<td>-0.208***</td>
<td>-0.191***</td>
<td>0.080**</td>
<td>0.092***</td>
<td>-0.182***</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.048)</td>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Income(t-1) \times pollution(t-1)</td>
<td>0.080**</td>
<td>0.092***</td>
<td>0.087***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minority (ref = German)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st generation \times pollution(t-1)</td>
<td>-0.123*</td>
<td>-0.107</td>
<td>-0.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.059)</td>
<td>(0.059)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd generation \times pollution(t-1)</td>
<td>0.050</td>
<td>0.074</td>
<td>0.067</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.097)</td>
<td>(0.096)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Additional controls</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>AIC</td>
<td>15343</td>
<td>14818</td>
<td>15364</td>
<td>14832</td>
<td>14821</td>
</tr>
<tr>
<td>loglik</td>
<td>-7630</td>
<td>-7348</td>
<td>-7639</td>
<td>-7353</td>
<td>-7344</td>
</tr>
<tr>
<td>N households</td>
<td>3789</td>
<td>3789</td>
<td>3789</td>
<td>3789</td>
<td>3789</td>
</tr>
<tr>
<td>N</td>
<td>13239</td>
<td>13239</td>
<td>13239</td>
<td>13239</td>
<td>13239</td>
</tr>
</tbody>
</table>

*** \(p < 0.001\), ** \(p < 0.01\), * \(p < 0.05\), twotailed test. Cluster robust standard errors in parentheses. SOEP waves: 1986, 1994, 1999, 2004, 2009, 2014, 2016. Basic controls: year, age (5-year interval dummies). Additional controls: child(ren) in hh, partner in hh, distance to city centre, flat condition. All covaraites are also included as household-specific mean (omitted in output).
Results income M1 (only basic controls)
Results income M2 (additional controls)

Av. marginal effect of pollution on moving probability

Household income (in t Euro)

M2 (full set of controls)
Results minorities

Average marginal effect of pollution

- Native German
- Minority 1st gen
- Minority 2nd gen

Basic controls (M3) Additional controls (M4) Plus income interaction (M5)
Results minorities

Average marginal effect of pollution

- Native German
- Minority 1st gen
- Minority 2nd gen

Basic controls (M3)
Additional controls (M4)
Plus income interaction (M5)
Results minorities × income

Av. marginal effect of pollution on moving probability

Household income (in t Euro)

- Native German
- Minority 1st gen
Discussion

Robustness

- Income effect: robust
- Minority effect: sensitive to model specification
Discussion

Robustness

- Income effect: robust
- Minority effect: sensitive to model specification

Effect size

- Relocation probability in 5 year interval: $\sim 40\%$
- Pollution effect on out-migration moderate
 - 4-5 %points
 - 1.6 %points change by income
 - 2.6 %points minority disadvantage
- Smaller effect size for full sample
- But: within-household effect
Conclusions

Selective Out-migration

▶ Income selectivity in escaping polluted areas
▶ (Minority disadvantages in out migration)
▶ Income explains over 20% of minority disadvantage
⇔ Contradicts findings on in-migration
 (Best and Rüttenauer, 2018)
Conclusions

Selective Out-migration
- Income selectivity in escaping polluted areas
- (Minority disadvantages in out migration)
- Income explains over 20% of minority disadvantage

\(\iff \) Contradicts findings on in-migration
(Best and Rüttenauer, 2018)

Implications
- Different mechanisms at different stages?
 1. Out-migration: income-selection
 2. In-migration: minority-selection
- Maybe explanation for mixed results on macro level
Thank you very much!

Table: Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Native German</th>
<th>1st gen. minority</th>
<th>2nd gen. minority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move within two periods</td>
<td>0.378</td>
<td>0.393</td>
<td>0.411</td>
</tr>
<tr>
<td>Impairment air pollution</td>
<td>1.858</td>
<td>1.932</td>
<td>1.897</td>
</tr>
<tr>
<td>Household income (in t EUR)</td>
<td>1.59</td>
<td>1.220</td>
<td>1.685</td>
</tr>
<tr>
<td>Age</td>
<td>51.362</td>
<td>51.748</td>
<td>42.912</td>
</tr>
<tr>
<td>Child(ren) in household</td>
<td>0.447</td>
<td>0.634</td>
<td>0.485</td>
</tr>
<tr>
<td>Partner in household</td>
<td>0.685</td>
<td>0.797</td>
<td>0.696</td>
</tr>
<tr>
<td>Distance to city centre</td>
<td>3.099</td>
<td>3.013</td>
<td>2.730</td>
</tr>
<tr>
<td>Condition of flat/house</td>
<td>3.603</td>
<td>3.584</td>
<td>3.643</td>
</tr>
<tr>
<td>Owner of flat/house</td>
<td>0.342</td>
<td>0.231</td>
<td>0.264</td>
</tr>
<tr>
<td>N groups</td>
<td>3097</td>
<td>537</td>
<td>156</td>
</tr>
<tr>
<td>N</td>
<td>10910</td>
<td>1805</td>
<td>526</td>
</tr>
</tbody>
</table>
Fixed Effects Logit

\[P(y_{it} = 1|x_{it}, c_i) = \Lambda(x_{it}\beta + c_i), \quad t = 1, \ldots, T, \]

where \(\Lambda(\cdot) \) is a logistic function, \(y_{it} \) the binary response, \(x_{it} \) a \(1 \times K \) predictor vector, \(\beta \) a \(K \times 1 \) parameter vector, and \(c_i \) the unobserved individual effect (Wooldridge, 2010, pp.619)
Method

Fixed Effects Logit

\[P(y_{it} = 1|x_{it}, c_i) = \Lambda(x_{it}\beta + c_i), \ t = 1, \ldots, T, \] \hspace{1cm} (2)

where \(\Lambda(\cdot) \) is a logistic function, \(y_{it} \) the binary response, \(x_{it} \) a \(1 \times K \) predictor vector, \(\beta \) a \(K \times 1 \) parameter vector, and \(c_i \) the unobserved individual effect (Wooldridge, 2010, pp.619)

Problems

- Coefficients of interactions in binary models not interpretable (e.g. Ai and Norton, 2003)
 \(\Rightarrow \) Use AMEs (Mize, 2019)
- But: no AMEs for FE logit possible
Table: Fixed-effects logit. Dependent variable: move-out.

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution<sub>t-1</sub></td>
<td>0.039</td>
<td>−0.042</td>
<td>0.220***</td>
<td>0.154***</td>
<td>−0.022</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.055)</td>
<td>(0.031)</td>
<td>(0.033)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>Household income<sub>t-1</sub></td>
<td>−0.229**</td>
<td>−0.211**</td>
<td></td>
<td>−0.200**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.072)</td>
<td></td>
<td>(0.072)</td>
<td></td>
</tr>
<tr>
<td>Income<sub>t-1</sub> × pollution<sub>t-1</sub></td>
<td>0.118***</td>
<td>0.135***</td>
<td></td>
<td>0.129***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.035)</td>
<td></td>
<td>(0.036)</td>
<td></td>
</tr>
<tr>
<td>Minority (ref = German)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st generation × pollution<sub>t-1</sub></td>
<td></td>
<td></td>
<td>−0.164*</td>
<td>−0.134</td>
<td>−0.095</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.076)</td>
<td>(0.078)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>2nd generation × pollution<sub>t-1</sub></td>
<td></td>
<td></td>
<td>0.055</td>
<td>0.074</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.138)</td>
<td>(0.141)</td>
<td>(0.140)</td>
</tr>
</tbody>
</table>

Basic controls: year, age (5-year interval dummies). Additional controls: child(ren) in hh, partner in hh, distance to city centre, flat condition.

*** p < 0.001, ** p < 0.01, * p < 0.05, twotailed test. Cluster robust standard errors in parentheses.
Table: Fixed-effects linear probability model. Dependent variable: move-out.

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution_{t−1}</td>
<td>0.023***</td>
<td>0.012</td>
<td>0.039***</td>
<td>0.029***</td>
<td>0.014*</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Household income_{t−1}</td>
<td>−0.027***</td>
<td>−0.025***</td>
<td></td>
<td>−0.024***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td></td>
<td>(0.007)</td>
<td></td>
</tr>
<tr>
<td>Income_{t−1} × pollution_{t−1}</td>
<td>0.009**</td>
<td>0.011**</td>
<td></td>
<td></td>
<td>0.011**</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Minority (ref = German)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st generation × pollution_{t−1}</td>
<td></td>
<td></td>
<td>−0.020</td>
<td>−0.017</td>
<td>−0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>2nd generation × pollution_{t−1}</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.020)</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
</tbody>
</table>

	yes	yes	yes	yes	yes
Basic controls	no				
Additional controls		yes			yes
AIC	11099	10166	11114	10179	10167
loglik	-5527	-5050	-5534	-5057	-5049
N households	8867	8867	8867	8867	8867
N	28408	28408	28408	28408	28408

Subsample vs. full sample

Cases in FE Logit

- N = 13,241
- Only cases with a least 1 stationary and 1 relocation period
- All other cases: no within information
- Average treatment effect on treated (ATT)
Subsample vs. full sample

Cases in FE Logit
- $N = 13,241$
- Only cases with at least 1 stationary and 1 relocation period
- All other cases: no within information
- Average treatment effect on treated (ATT)

CRE Probit
- So far: same sample
- But also possible for only stationary / moving households
- $N = 28,408 (8,867)$
Subsample vs. full sample

AMEs M2: Subsample

AMEs M2: Full sample

References Descriptives Method Robustness Sample

21 / 14
Subsample vs. full sample

AMEs M2: Subsample

AMEs M2: Full sample

Average marginal effect of pollution

Basic controls (M3) Additional controls (M4) Plus income interaction (M5)

Native German

Minority 1st gen

Minority 2nd gen

References Descriptives Method Robustness Sample