Cross-cutting cleavages and native-refugee contact: quasi-experimental evidence from Germany

Alexandra Kommol, Nan Zhang (MZES)

Analytical Sociology: Theory and Empirical Applications, Venice

15 November 2022

Introduction

- Numbers of refugees increasing in Europe and Germany
- Social integration highly debated, important componant: social ties with natives
- Several positive *outcomes* of refugee-native contact
- Determinants of refugee-native contact?
 —— Crosscutting cleavages like life course similarity

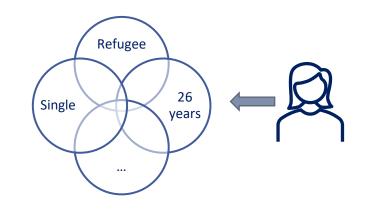
Nour
Single
26 years

Samer Married 67 years

Samer Married 67 years

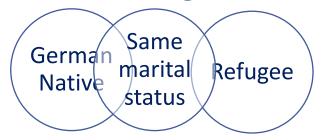
Better "fit"

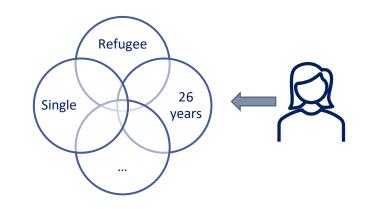

Single 26 years


Samer Married 67 years

Background

- Individuals part of multiple social circles (Simmel 1908, Roccas & Brewer 2002)
- Crosscutting social circles (Blau & Schwartz 1997)





• Perceived similarity enhances prosocial behavior & contact intentions of natives towards immigrants and ethnic outgroups (López-Rodríguez et al. 2017; Osbeck et al. 1997)

Background

- Individuals part of multiple social circles (Simmel 1908, Roccas & Brewer 2002)
- Crosscutting social circles (Blau & Schwartz 1997)

Perceived similarity enhances prosocial behavior & contact intentions
 of natives towards immigrants and ethnic outgroups (López-Rodríguez et al. 2017;
 Osbeck et al. 1997)

Background: Life Course Similarity

- Life course positions are important factors in most societies
 - create (dis-)similarities & impact interactions (Hipp & Perrin 2009)
- Change in marital status impacts personal networks (Albeck & Kaydar 2002, Kalmijn 2003)
- Differences in marital status lifestyle differences (Hipp & Perrin 2009)
 - increased mutual understanding, attending joint activities (Kalmijn and Vermunt 2007)
- Marital status not independent of age, interrelated life course factors (Kalmijn & Vermunt 2007) similarity score based on combination of both

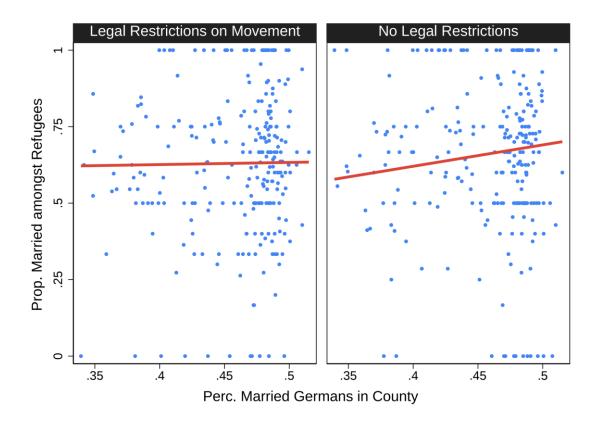
Background

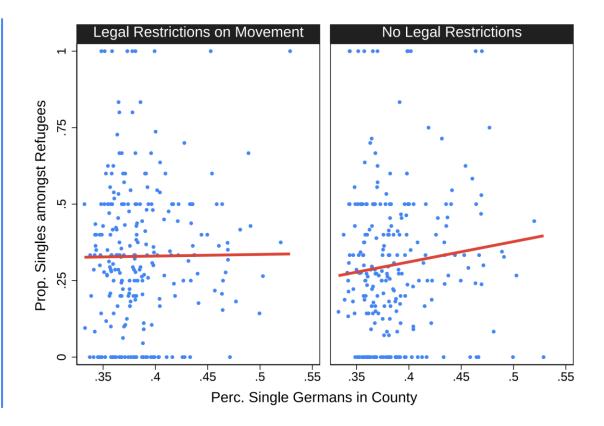
Expectation

Refugees living in a county with a higher share of natives similar in marital status and age tend to have more contact with natives than refugees in a county with a lower share of similar natives.

Identification Strategy

Potential issue: self-selection




Nour

Solution

- Exogenous assignment of refugees to German federal states (Königsteiner Schlüssel)
- Federal states can decide to assign refugees to certain counties/municipalities
- Domicile obligation (Wohnsitzauflage)

Data

IAB-BAMF-SOEP Survey of Refugees (SOEP v37)

- Restrictions to sample: legally covered by domicile obligation
 - (1) applied for asylum after 2016 Integration Law was passed
 - (2) interviewed within 3 years (36 months) after asylum decision taken
- Longitudinal data but cross-sectional data structure based on first interviews only

Administrative Data Regionaldatenbank

 County level information on marital status, decennial age categories for people without migration background

Method

- Linear probability model, with county-level random intercepts
- DV: Contact frequency (binary)
 - At least weekly vs. less often
- IV: "Marital status by age"-similarity
 - Similarity: in same marital status & age category
 - Example
 - single, 25-year old refugee ~ single, 29-year old native
 - single, 25-year old refugee ≠ married, 29-year old native

Control variables: marital status, age category, year of interview FEs, gender, education, children in HH, number of months since immigration, participation in language course, legal status, country of origin

Results

- Native-refugee contact enhanced when sharing life course similarities in terms of marital status and age
- Around 4 percentage points
- ~ 12 months longer residence in Germany

Table 1: Contact with Natives and Contextual Similarity

(1)	(2)	(3)	(4)
0.045**	0.038**	0.041**	0.034*
(0.013)	(0.013)	(0.014)	(0.014)
(ref.)			
-0.010	-0.007	-0.021	-0.015
(0.030)	(0.037)	(0.031)	(0.038)
-0.027	-0.010	-0.040	-0.023
(0.080)	(0.081)	(0.082)	(0.082)
			0.185 +
(0.100)	(0.100)	(0.102)	(0.102)
(ref.)			
0.002	-0.009	0.003	-0.010
(0.022)	(0.023)	(0.023)	(0.023)
-0.125**	-0.133**	-0.117**	-0.128**
(0.036)	(0.035)	(0.037)	(0.036)
-0.112**	-0.119**	-0.097*	-0.106*
(0.043)	(0.043)	(0.044)	(0.044)
-0.226**	-0.253**	-0.220**	-0.239**
(0.067)	(0.068)	(0.069)	(0.069)
-0.393**	-0.366*	-0.372*	-0.353*
(0.145)	(0.143)	(0.148)	(0.147)
	0.104**		0.103**
	(0.018)		(0.018)
	0.068**		0.069**
	(0.019)		(0.020)
	0.003**		0.003**
	(0.001)		(0.001)
	0.111**		0.113**
	(0.019)		(0.020)
	-0.054**		-0.039+
	(0.020)		(0.021)
DE	DE	FE	FE
KE	KE	T.D.	T.E.
	-0.010 (0.030) -0.027 (0.080) 0.147 (0.100) 0.002 (0.022) -0.125** (0.036) -0.112** (0.043) -0.226** (0.067) -0.393** (0.145)	0.045** 0.038** (0.013) (0.013) (re -0.010 -0.007 (0.030) (0.037) -0.027 -0.010 (0.080) (0.081) 0.147 0.214* (0.100) (0.100) (re 0.002 -0.009 (0.022) (0.023) -0.125** -0.133** (0.036) (0.035) -0.112** -0.119** (0.043) (0.043) -0.226** -0.253** (0.067) (0.068) -0.393** -0.366* (0.145) (0.143) 0.104** (0.018) 0.068** (0.019) 0.003** (0.001) 0.111** (0.019) -0.054**	0.045** 0.038** 0.041** (0.013) (0.013) (0.014) (ref.) -0.010 -0.007 -0.021 (0.030) (0.037) (0.031) -0.027 -0.010 -0.040 (0.080) (0.081) (0.082) 0.147 0.214* 0.122 (0.100) (0.100) (0.102) (ref.) 0.002 -0.009 0.003 (0.022) (0.023) (0.023) -0.125** -0.133** -0.117** (0.036) (0.035) (0.037) -0.112** -0.119** -0.097* (0.043) (0.043) (0.044) -0.226** -0.253** -0.220** (0.067) (0.068) (0.069) -0.393** -0.366* -0.372* (0.145) (0.143) (0.148) 0.104** (0.018) 0.068** (0.019) 0.003** (0.001) 0.111** (0.019) -0.054** (0.019) -0.054** (0.020)

Exploratory analysis: Sexual competition

- Men's behavior is strongly driven by outgroup presence (Vugt et al. 2007)
- Especially relevant in context of sexual competition (Dancygier et al. 2022)

Expectation: Being a young single male refugee mitigates the positive effect of living in a county with higher similarity scores on contact with natives.

Results

- Split sample in young single male refugees (aged 20-29) vs. others
- Similarity has <u>no</u> effect on contact with natives for *young single male refugees*
- Effect for others increases to 5.3 percentage points

Table 2: Exploratory Analyses: With and Without Single Men

	Only	Dropping Single Men 20-29	
	Single Men 20-29		
	(1)	(2)	
Similarity score (std.)	0.008	0.053**	
	(0.042)	(0.015)	
Marital Status:			
Single		(ref.)	
Married (incl. spouse abroad)		-0.009	
•		(0.033)	
Divorced		0.020	
		(0.077)	
Widowed		0.247*	
		(0.097)	
Age cateogories:			
20-29		(ref.)	
30-39		-0.024	
		(0.024)	
40-49		-0.158**	
		(0.039)	
50-59		-0.147**	
		(0.046)	
60-69		-0.272**	
		(0.067)	
70-79		-0.402**	
		(0.140)	
Covariates	✓	✓	
N	807	2876	

Summary and Discussion

- Cross-cutting cleavages shape native-refugee contact in Germany
- Contact enhanced when sharing life course similarities
- Sexual competition potential additional factor shaping contact
- Implications for allocation policies:
 - Taking into account "fit" of refugees with location allocated to
 - Voluntary decision of refugees where to move to
 - Shorter duration of domicile obligation
- Limitation: Coding of similarity score variable treats unequally dissimilar individuals as equally dissimilar

Thank you for your attention!

Contact

Alexandra Kommol

Mannheimer Zentrum für Europäische Sozialforschung (MZES), University of Mannheim <u>alexandra.kommol@uni-mannheim.de</u>

Bibliography

Aksoy, C. G., Poutvaara, P., Schikora, F. (2021). First Time Around: Local Conditions and Multi-dimensional Integration of Refugees. EBRD Working Paper No. 250.

Albeck, S. & Kaydar, D. (2002). Divorced Mothers, Journal of Divorce & Remarriage, 36:3-4, 111-138

Bansak, K., Ferwerda, J., Hainmueller, J., Dillon, A., Hangartner, D., Lawrence, D., & Weinstein, J. (2018). Improving refugee integration through data-driven algorithmic assignment. Science, 359(6373), 325-329.

Blau, P., & Schwartz, J. (1997). Crosscutting Social Circles: Testing a Macrostructural Theory of Intergroup Relations (1st ed.). Routledge.

Dancygier, R., Egami, N., Jamal, A. and Rischke, R. (2022). Hate Crimes and Gender Imbalances: Fears over Mate Competition and Violence against Refugees. American Journal of Political Science, 66: 501-515.

Hipp, J. R., & Perrin, A. J. (2009). The Simultaneous Effect of Social Distance and Physical Distance on the Formation of Neighborhood Ties. City & Community, 8(1), 5–25.

Kalmijn, M. (2003). Shared friendship networks and the life course: An analysis of survey data on married and cohabiting couples. Social Networks, 25(3), 231-249.

Kalmijn, M., & Vermunt, J. K. (2007). Homogeneity of social networks by age and marital status: A multilevel analysis of ego-centered networks. Social Networks, 29(1), 25-43.

López-Rodríguez, L., Cuadrado, I., & Navas, M. (2017). I will help you because we are similar: Quality of contact mediates the effect of perceived similarity on facilitative behaviour towards immigrants. International Journal of Psychology, 52(4), 273-282.

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 415-444.

Osbeck, L. M., Moghaddam, F. M., & Perreault, S. (1997). Similarity and attraction among majority and minority groups in a multicultural context. International Journal of Intercultural Relations, 21(1), 113-123.

Roccas, S., & Brewer, M. B. (2002). Social identity complexity. Personality and social psychology review, 6(2), 88-106.

Simmel, G. (1908). Soziologie: Untersuchungen über die Formen der Vergesellschaftung. Vol. 1. Duncker & Humblot.

Vugt, M. V., Cremer, D. D., & Janssen, D. P. (2007). Gender differences in cooperation and competition: The male-warrior hypothesis. Psychological science, 18(1), 19-23.