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Online dating prevalence

How heterosexual couples have met, data from 2009 and 2017
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Previous research

Online dating data

e More men than women (2/3 vs 1/3)

e Men send majority of messages but receive very little (Rudder 2014; Su and Hu 2019; Skopek, Schulz, and Blossfeld 2011;
Setinovd and Topinkové 2021)

e (verall, women more picky compared to men
Surveys

e men report feeling insecure about number of messages (McClain and Gelles-Watnick 2023)
e women report feeling overwhelmed by the number of messages (McClain and Gelles-Watnick 2023)

= & often report harassment (Vogels 2021)

Venice 20.11.2023




30 -

women
25 -
20 -
messages/ 15 -
week
all
10 =
men

Oth 10th 20th 30th 40th 50th 60th 70th 80th 90th

attractiveness percentile

Source: Rudder (2014)
Venice 20.11.2023




Market congestion

Congestion is a common issue in digital platform markets, wherein users tend to focus their attention on a subset of
popular peers. (Huang et al. 2022)

e (apacity constraints - the most popular users become “too busy” or overwhelmed by responses -> a lat of the effort spent
pursuing them is wasted (Huane et al. 2022)

e dissatisfaction due to rejection
= |ink between romantic rejection and male hostility (Andrighetto, Riva, and Gabbiadini 2019)
e harassment, churn

e inthe case of online dating, those users are often attractive, young women (Setinova and Topinkovd 2021)
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Previous research on market congestion

Karmegam, Ramaprasad, and Gopal (2022)

e (quasi-experimental, partnership with Indian online dating site
e focused on women'’s experience

e restricting users’ visibility for men

= (|aim to improved women's experience and matching for bath

Huang et al. (2027) - field experiment, partnership with Chinese online dating site

e disclosing individual's popularity and demand (high: “Received x requests in the past, this lady (or gentleman) is very
popular”; low: “Received x requests in the past, this lady (or gentleman) is not picked by many others”)

= (ecline in targetting highly popular users, efforts more spread -> lower congestion
= stronger effect for individuals who are nat themselves popular
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Pilot questions

Broad RQ: How does altering the (structural) components of online dating environments influence the mating choices of
individuals?

How to test it?

--> By building an app that would allow to test different market affordances, while having complete control over them.

ROL: Can the disclosure of profiles’ popularity lower the market congestion?
i.e., replication of Huang et al. (2027)

ROZ: How far can we get without having a real market?
(e.g. Salganik, Dodds, and Watts (2006))
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Interactive web application

e photo

= (hicago Face Database (Ma, Correll, and Wittenbrink 2015), subset of happy phatos, ages 18-40, Black and White
models, attractiveness rated by independent judges

= encodes gender, ethnicity, age, attractiveness
e age (hased on rating of photo)

e education (lower than high school, high school, university)

= generated randomly

Experimental condition
Treatment: Disclosure of individual popularity of profiles (based on attractiveness)

This profile has a low/medium/high popularity rating, indicating that not many/some/many ather users liked the
profile.

Control: No disclosure of individual popularity of profiles
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Interactive web application

Education: High school

Instructions
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Education: High school

This profile has a high popularity rating,
indicating that many other users liked the
profile.
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Pilot study

e no well-defined population for online daters
= & differences between platforms
o Recruitment via Prolific
= see Douglas, Ewell, and Brauer (2023) on data quality in online human subject research
o UK, US, Germany, France
= English speakers aged 18-35, balanced gender sample
e 1100 participants recruited on 16.- 17.11.2023
= removed users who were too fast, timed out etc.

= (ompared demographics provided by Prolific to those we collected
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Sanity checks
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Even in “no stakes” scenatio, women are more picky than men
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Sanity checks
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Sanity checks
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Sanity checks
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Experiment: Distribution of likes
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Modelling profile likes: Full sample

User gender: woman —a—
User attractivity: high (ref: low) ——
User attractivity: medium (ref: low) —o—
Age difference user / profile o
Same ethnicity user / profile o
Treatment —0—
Profile education: hschool (ref: < hschool) -
Profile education: uni (ref: < hschool) -
Profile attractivity: mid (ref: low) -®-
Profile attractivity: high (ref: low) -
-2 -1 O 1 2
Random intercept logistic regression model. Dependent variable: like of shown dating profile.

Treatment: popularity indicator for shown profile. Observations: user decisions, nested in users.
Forest plot depicts logit coefficients and 95% confidence intervals.
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Modelling profile likes: Online dating & looking

User gender: woman —

User attractivity: high (ref: low) @

User attractivity: medium (ref: low) @
Age difference user / profile o
Same ethnicity user / profile ——
Treatment —0—
Profile education: hschool (ref: < hschool) +
Profile education: uni (ref: < hschool) —0—
Profile attractivity: mid (ref: low) —0—
Profile attractivity: high (ref: low) ——

9 <1 0 1 2 3
Log-Odds

Random intercept logistic regression model. Dependent variable: like of shown dating profile.
Treatment: popularity indicator for shown profile. Observations: user decisions, nested in users.
Subsample: users with prior online dating exp. & currently looking for casual / serious relation.
Forest plot depicts logit coefficients and 95% confidence intervals.
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Conclusion

Null effect for the treatment - Information disclosure does nat seem to influence the results

e in contrast with Huang et al. (202¢)

Why?

e artificial vs real market

= Put our other results seem to be consistent with expectations from real markets
e (Ulture

= previous research done on specific markets (China)
e Website vs app setting

= initiating matches with additional partners less costly on apps

= {reatment may need ather representation (e.g. visual)
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T0DO0s

Other treatments

e tryto replicate ather treatments from Huang et al. (202¢7)
e ry to replicate Karmegam, Ramaprasad, and Gopal (202¢)

Approaching real market

e ¢jther partner with the powerful

e 0or, make an interactive experiment that allows for interaction between users
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