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• How does a moderator 𝑀
affect the effect of  a treatment 𝑇
on an outcome 𝑌?

• Standard (linear) moderation model:
• all constitutive terms
• plus (multiplicative) interaction term

𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿 𝑇 ൈ𝑀

• (Conditional) treatment effects (TE)
𝑇𝐸 𝑇 | 𝑀 ൌ 0 ൌ 𝛽 
𝑇𝐸 𝑀 | 𝑇 ൌ 0 ൌ 𝛾

• Moderation effect (ME)
𝑀𝐸 𝑀 ൌ 𝛿

Standard moderation analysis

• In most standard moderation analyses 
• the theoretical estimand is not defined
• identification/estimation assumptions are 

not discussed

• We will see
• that there are many informative estimands
• that the standard moderation model rests 

on (too) strong identification assumptions

• Content
• Part I: observational data
• Part II: experimental data
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• Descriptive estimand
• Effect heterogeneity: sub-group 

specific difference in causal TE[T]

• Causal estimands
• Causal moderation: (total) causal 

ME[M] on the (total) causal TE[T]

• Causal interaction: the causal effect of  
two simultaneously applied treatments 
(joint treatment effect, JTE)

Many moderation estimands

M

YT
𝛿

M

YT
𝛿

JTE = ME[M] = ME[T]

M

Y

T

𝑇 ൈ𝑀 𝛿
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Identification (Hernán/Robins 2023, pp. 58 ff.)

• TE of  𝑇𝑀 (combined treatment) 
must be identified

• TE of  𝑇 must be identified
• TE of  𝑀 must be identified
• JTE must be identified

Identification of  a causal moderation effect

• Key identification assumption: 
conditional independence

• After conditioning on confounders
the potential outcomes and ሼ𝑀,𝑇ሽ
must be independent

• No unobserved confounding
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Situation: only TE confounding

• Constant confounding
• Estimation (linear model)

𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿 𝑇 ൈ𝑀
 𝑎 𝐶
 𝑐 𝑍

In addition JTE confounding

• Differential confounding
• Estimation (linear model)

𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿 𝑇 ൈ𝑀
 𝑎 𝐶  𝑏 𝐶 ൈ 𝑇
 𝑐 𝑍  𝑑 𝑍 ൈ𝑀

M

YT

𝑍

𝐶
𝐶

M

YT
𝑍
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• In this example, TE[T] is differentially 
confounded by 𝑍 for different levels of  𝑀

• JTE is biased upwards

• Analogue arguments apply for 
differential confounding by 𝐶 ൈ 𝑇

• Why would the interaction 𝑍 ൈ𝑀
bias the JTE?

Differential confounding

No confounding by 𝑍
Differential confounding by 𝑍 ൈ𝑀

JTE

JTE

TE[T]

𝑀 ൌ 1𝑀 ൌ 0

Bias

Bias
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• Due to differential confounding 
C is also a moderator of  TE[T]

• If  we do not account for this, ME[M] will 
„pick up“ the moderation by 𝐶

“Omitted interaction bias”
(Beiser-McGrath/Beiser-McGrath 2020, 
Blackwell/Olson 2022; Breen et al. 2015; 
Nilsson et al. 2021)

• We can avoid an omitted interaction bias 
by controlling for 𝐶 and 𝐶 ൈ 𝑇

• And due to symmetry analogous 
arguments also apply for 𝑍 and 𝑍 ൈ𝑀

Intuition: omitted interaction bias

𝐶M

YT
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• DGP
• 𝑇,𝑀,𝐶 ~𝑵 0,1 , (𝑁 ൌ 1,000)
• Moderation effect of  𝑀: 𝟎.𝟏
• Differential confounding by 𝐶

Simulation: omitted interaction bias

1

𝐶
M

YT
0.1 0.1

0.2

0.6

0.9

-.1 0 .1 .2 .3 .4 .5 .6 .7 .8

Moderation effect of M

M1: Omitted interaction bias (omitting C x T)
M2: Controlling for C x T
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• Happiness declines with age 
• (Almost) linearly between 

ages 25 and 55 (Kratz/Brüderl 2021)

• Does income causally moderate the 
happiness decline?

• Potential omitted interaction bias

Omitted interaction bias in real world data

• SOEP v37, only ages 25 – 55, N=30,073
• Linear FE model
• Age / 30
• Personal net income in quintiles


Income Education

Social origin
Resilience

Age Happiness


All moderators are time-constant, 
and therefore not affected by age
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• Estimation for causal moderation 
(resp. causal interaction) 

• Est. for effect heterogeneity
• TE[T] must be identified

Summary: different estimands, different estimation

𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿ଵ 𝑇 ൈ𝑀
 𝑎 𝐶  𝑏 𝐶 ൈ 𝑇
 𝑐 𝑍  𝑑 𝑍 ൈ𝑀

Causal moderation
𝑀𝐸 ൌ 𝛿ଵ

Effect heterogeneity
𝐸𝐻 ൌ 𝛿ଶ

𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿ଶ 𝑇 ൈ𝑀
 𝑐 𝑍  𝑑 𝑍 ൈ𝑀

𝐶

M

YT
𝑍
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• A way out? 
Do experimental designs make it easier 
to identify causal moderation effects? 
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Design A: Randomized moderator

• Multifactorial experiment
• Both 𝑇 and 𝑀 are assigned randomly

• Example: Test for statistical discrimination: 
Smaller effect of  ethnicity when there is 
more information about employment?

• 2 x 2 experimental design
• T = Ethnicity (e.g., Turk vs. German)
• M = Info on employment (yes vs. no)

• JTE ሺ𝑇 𝑥 𝑀ሻ is estimand for 
statistical discrimination

Dear Ms./Mr., 
I am very interested in the apartment you advertised. 
My name is Cem Güleryüz. I am permanently 
employed as an electrician. I would be very grateful 
if you could offer me a viewing.
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• 𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿 𝑇 ൈ𝑀
 𝑎 𝐶  𝑏 𝐶 ൈ 𝑇
 𝑐 𝑍  𝑑 𝑍 ൈ𝑀

R:M

YR:T

Design A: Randomized moderator

• Identification?
• Due to the randomization 

(denoted by ‘R:’):
No confounders for T and M

Eliminated 
by design!

𝐶

R:M

YR:T

𝑍
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• 𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿 𝑇 ൈ𝑀

R:M

YR:T

Design A: Randomized moderator

• Identification?
• Due to the randomization 

(denoted by ‘R:’):
No confounders for T and M

Both TEs and JTE 𝑇 ൈ𝑀 correctly 
identified by standard approach 
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Design B: Non-randomized moderator

• For many research questions, a random 
assignment of  M is hard to achieve, e.g.

• Characteristics of  participants
• Different (regional) contexts

• Example: More/less discrimination in local 
contexts with many foreigners?

• Effect heterogeneity: does discrimination 
vary by %foreigners? 
(correlation with segregation)

• Causal moderation: does %foreigners 
per se make a difference?
(evidence for the contact hypothesis) 

% Foreigners

<2%
2% - < 6%
6% - < 10%
10% - < 14%
14% - < 18%
≥18%
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• 𝑌 ൌ 𝛼  𝛽 𝑇  γ 𝑀  𝛿 𝑇 ൈ𝑀
 𝑎 𝐶  𝑏 𝐶 ൈ 𝑇

Design B: Non-randomized moderator

• Identification?
• Estimation of  causal moderation effect: 
𝐶 and 𝐶 𝑥 𝑇 have to be included for 
successful identification!

𝐶

M

YR:T
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Treatment T: Turk
Moderator M: %foreigners

TJE: T x %foreigners

City
Eastern Germany

Vacancy rate

Turk X City
Turk X Eastern Germany

Turk X %vacancies

 Controls - main effects

Controls - interaction effects

-.2 -.1 0 .1 .2
P(response) [ppt]

Empirical example for Design B

Treatment T: Turk
Moderator M: %foreigners

TJE: T x %foreigners

City
Eastern Germany

Vacancy rate

Turk X City
Turk X Eastern Germany

Turk X %vacancies

 Controls - main effects

Controls - interaction effects

-.2 -.1 0 .1 .2
P(response) [ppt]

Treatment T: Turk
Moderator M: %foreigners

TJE: T x %foreigners

City
Eastern Germany

Vacancy rate

Turk X City
Turk X Eastern Germany

Turk X %vacancies

 Controls - main effects

Controls - interaction effects

-.2 -.1 0 .1 .2
P(response) [ppt]

• Field experiment on ethnic discrim.; 
discrimination depending on size 
of  foreign population in local area?

• R: T = Ethnicity (Turk vs. Ger)
• M = %foreigners in county

• Data on the German 
housing market 2015 
(Auspurg/Lorenz/Schneck 2023, N = 9.450)
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• But be aware: 
• There might be unobserved 

confounders
• Especially in cross-sectional designs

• Think of  randomizing M
• Natural experiments
• Randomized controlled trials

• Panel data on T and M can help
• E.g., survey experiments implemented 

in a panel study

Unobserved moderation confounders

Example: Two-wave field experiment; 
in between: natural experiment of ↑% foreigners due 

to the “refugee crisis”

Source: Auspurg/Lorenz/Schneck 2023, p. 647
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• If  you are going to present a 
moderation analysis, please provide 
the following information:

• What is your estimand?
• Descriptive effect heterogeneity
• Causal moderation effect

• Discuss your identification and 
estimation assumptions

• Are there potential moderation effect 
confounders?

Take-home messages for Venice-seminar (and beyond)
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Thank you for your attention!
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